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Abstract

When human raters are presented with a collection of shapes and
asked to rank them according to their aesthetic appeal, the results
often indicate that there is a statistical consensus among the raters.
Yet it might be difficult to define a succinct set of rules that capture
the aesthetic preferences of the raters. In this work, we explore
a data-driven approach to aesthetic enhancement of such shapes.
Specifically, we focus on the challenging problem of enhancing the
aesthetic appeal (or the attractiveness) of human faces in frontal
photographs (portraits), while maintaining close similarity with the
original.

The key component in our approach is an automatic facial attrac-
tiveness engine trained on datasets of faces with accompanying fa-
cial attractiveness ratings collected from groups of human raters.
Given a new face, we extract a set of distances between a variety of
facial feature locations, which define a point in a high-dimensional
“face space”. We then search the face space for a nearby point with
a higher predicted attractiveness rating. Once such a point is found,
the corresponding facial distances are embedded in the plane and
serve as a target to define a 2D warp field which maps the origi-
nal facial features to their adjusted locations. The effectiveness of
our technique was experimentally validated by independent rating
experiments, which indicate that it is indeed capable of increasing
the facial attractiveness of most portraits that we have experimented
with.

Keywords: facial attractiveness, machine learning, optimization,
warping

1 Introduction

Aesthetics and beauty have fascinated human beings from the very
dawn of mankind, inspiring countless artists and philosophers.
However, an absolute definition of aesthetic values remains elusive.
For example, when a group of human raters is presented with a col-
lection of shapes and asked to rank them according to their aesthetic
appeal, the results often indicate that there is a statistical consensus
among the raters. Yet it might be difficult to define a succinct set
of rules that capture the aesthetic perceptions of the raters. Further-
more, such perceptions vary among different classes of shapes, and
sometimes differ significantly from culture to culture. Therefore,
in this work, we explore the feasibility of a data-driven approach to
aesthetic enhancement. Specifically, we focus on the challenging
problem of enhancing the aesthetic appeal of human faces (or facial
attractiveness) in frontal photographs (portraits), while maintaining
close similarity with the original.
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Figure 1: Input facial images (left) and the adjusted images gener-
ated by our method (right). The changes are subtle, yet their impact
is significant.

Facial attractiveness has been extensively studied in psychology.
Several studies indicate that it is a universal notion, transcending the
boundaries between different cultures, since there is a high cross-
cultural agreement in facial attractiveness ratings among raters
from different ethnicities, socio-economic classes, ages, and gender
[Cunningham et al. 1995; Jones 1996; Perrett et al. 1994]. These
studies suggest that the perception of facial attractiveness is data-
driven, meaning that the properties of a particular set of facial fea-
tures are the same irrespective of the perceiver. A second line of
evidence supporting this belief comes from studies of infant pref-
erences for faces [Langlois et al. 1987; Slater et al. 1998]. These
studies reveal that infants looked longer at the attractive faces, re-
gardless of the faces’ gender, race, or age. Quite recently, using
supervised learning techniques, researchers succeeded in produc-
ing a trained model capable of generating facial attractiveness rat-
ings that closely conform to those given by human raters [Eisenthal
et al. 2006].

The universality of the notion of facial attractiveness along with the
ability to reliably and automatically predict the attractiveness rating
of a facial image has motivated this work. Specifically, we present
a novel tool capable of automatically enhancing the attractiveness
of a face in a given frontal portrait. Although for brevity we often
refer to this process as beautification, it should be understood that
we merely claim that images generated by our tool are more likely
to receive a higher average attractiveness rating, when presented to



Figure 2: Left: a collage with facial features taken from a catalog.
Middle: result of Poisson-blending the features together. Right:
result after applying our technique to the middle image.

a group of human observers. We make no claims that the result-
ing faces are more beautiful than the original ones on any absolute
scale; indeed, such a scale is yet to be found!

The main challenge in this work is to achieve the above goal while
introducing only minute, subtle modifications to the original image,
such that the resulting modified portrait maintains a strong, unmis-
takable similarity to the original, as demonstrated by the pair of
faces shown in Figure 1. This is a highly non-trivial task, since as
we shall see, the relationship between the ensemble of facial fea-
tures and the perceived facial attractiveness is anything but simple.

Applications

Professional photographers have been retouching and deblemish-
ing their subjects ever since the invention of photography. It may
be safely assumed that any model that we encounter on a magazine
cover today has been digitally manipulated by a skilled, talented
retouching artist. It should be noted that such retouching is not lim-
ited to manipulating color and texture, but also to wrinkle removal
and changes in the geometry of the facial features. Since the human
face is arguably the most frequently photographed object on earth,
a tool such as ours would be a useful and welcome addition to the
ever-growing arsenal of image enhancement and retouching tools
available in today’s digital image editing packages. The potential
of such a tool for motion picture special effects, advertising, and
dating services, is also quite obvious.

Another interesting application of our technique is the construction
of facial collages when designing a new face for an avatar or a syn-
thetic actor. Suppose we select a collection of facial features (eyes,
nose, mouth, etc.) originating from different faces, and would like
to synthesize a new face with these features. The features may be
assembled together seamlessly using Poisson blending [Pérez et al.
2003], but the resulting face is not very likely to look attractive, or
even natural, as demonstrated in Figure 2. Applying our tool on the
collage results in a new face that is more likely to be perceived as
natural and attractive.

Finally, this work results from our interest in the more general prob-
lem of enhancing the aesthetics of geometric shapes. While the
techniques described in the remainder of this paper focus on the
particular task of increasing the aesthetic appeal of faces, we be-
lieve the same paradigm could apply to other 2D shapes.

Overview

The key component in our approach is a beautification engine
trained using datasets of male and female faces with accompanying
facial attractiveness ratings collected from groups of human raters.
The entire beautification process is depicted in Figure 3. Given
a frontal portrait as input we first (semi-automatically) identify a
set of facial landmarks (feature points). Using a planar graph with

these feature points as vertices, we extract a vector of distances cor-
responding to the lengths of the edges in the graph. This vector is
fed into the beautification engine, which yields a modified vector
of distances, possessing a higher predicted beauty score than that
of the original vector. Next, the planar graph is re-embedded in the
plane attempting to make the new edge lengths as close as possible
to the modified distances. The resulting new positions of the feature
points define a 2D warp field that we use to warp the input portrait
into its beautified version.

The beautification engine, which is the core novel component of
our approach, is presented in Section 3. Section 4 describes the
semi-automatic process used to extract facial features, and Section
5 describes the distance embedding and the warping steps.

Our results indicate that the proposed method is capable of effec-
tively increasing the perceived facial attractiveness for most images
of both female and male faces that we have experimented with. In
particular, the effectiveness of our approach was experimentally
validated by a group of test subjects who consistently rated the
modified faces as more attractive than the original ones.

Our method uses two datasets. The first dataset consists of 92
frontal portraits of Caucasian females with neutral expression and
roughly uniform lighting. The second dataset consists of 33 por-
traits of Caucasian males. Thus, our tool currently can only be
expected to perform well on facial images with similar character-
istics. However, it may be directly extended to a wider variety of
faces, for example from additional ethnic groups, simply by using
it with engines trained on suitable collections of portraits.

2 Background

2.1 Previous work

Much of the research in computer graphics and in computer vi-
sion has concentrated on techniques and tools specifically geared
at human faces. In particular, there’s an extensive body of litera-
ture on facial modeling and animation [Parke and Waters 1996; Lee
et al. 1995; Guenter et al. 1998; Pighin et al. 1998; O’Toole et al.
1999], face detection [Yang et al. 2002], and face recognition [Zhao
et al. 2003]. The most relevant previous works to our own are the
different methods for 2D facial image morphing (e.g., [Beier and
Neely 1992; Lee et al. 1997]) and the 3D morphable facial models
of Blanz and Vetter [1999].

Similarly to image morphing methods, our approach also makes
use of 2D image warping to transform the input face. However, our
goals are very different. In image morphing, the goal is typically
to produce a continuous transformation between two very different
faces (or other pairs of objects). The challenge there lies mainly
in finding the corresponding features of the two faces, and defining
an appropriate warp. In our case, the challenge lies in finding the
target shape into which the source image is to be warped, such that
the changes are subtle yet result in a perceivable enhancement of
facial attractiveness.

Perceptual psychologists also often use image compositing, morph-
ing, and warping to gain a better understanding of how humans per-
ceive various facial attributes. For example, warping towards, and
away from average faces has been used to study facial attractive-
ness and aging (see e.g., [Perrett et al. 1999; Lanitis et al. 2002]).
Again, in this case the target shape for the morph, or the direction
of the warp, is predefined. Also, it is quite clear that if a face has an
above-average attractiveness to begin with, making it more similar
to the average face will not achieve our goal.

Blanz and Vetter [1999] present a 3D morphable face model with
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Figure 3: Our facial beautification process.

which it is possible to manipulate a number of facial attributes such
as masculinity or fullness, or even to generate new facial expres-
sions. Their morphable model is formed by a linear combination of
a set of prototype faces. Their underlying working assumption is
that the markedness of the attribute of interest is a linear function.
Consequently, increasing or decreasing the markedness is achieved
by moving along a single optimal direction in the space of faces.
At first glance, it may appear that our task could also be carried
out using such a method and indeed, such an attempt was made
[Blanz 2003]. However, as we discuss below, facial attractiveness
is a highly non-linear attribute.

Our approach does not require fitting a 3D model to a facial im-
age; rather, we operate directly on the 2D image data. We rely
on the availability of experimental data correlating facial attractive-
ness with 2D distances in a facial image, while no equivalent data
exists yet for distances between landmarks on a 3D facial mesh.
Our method could, however, assist in obtaining a “beautified” 3D
model, by applying our technique to an input image as a preprocess,
followed by fitting a 3D morphable model to the result.

2.2 Machine rating of facial attractiveness

Eisenthal et al. [2006] introduced an automatic facial attractiveness
predictor, based on supervised learning techniques. A collection of
92 frontal portraits of young Caucasian females with neutral expres-
sions was used as a training set. The attractiveness of each face was
rated by 28 human raters, both males and females. The average rat-
ing of a face is henceforth referred to as its beauty score. A variety
of regressors were then trained, based on 40 features that reflected
the geometry of the face, the color of the hair and the smoothness of
the skin . The best regressors based on the above features achieved
a correlation of 0.6 with human ratings. This is a highly non-trivial
result, considering that a random predictor has a zero expected cor-
relation with human rating, while the average correlation between
the rating of a single human rater and the average rating is around
0.68 [Kagian et al. 2007].

In this work we use the same collection of facial images and the
corresponding ratings collected by Eisenthal ez al. to train our own

regressor (Section 3.1) and use it as a guide in our beautification
process of female faces. To deal with male faces we used a second
training set of 33 portraits of young men, and acquired the attrac-
tiveness of each face using a protocol identical to that of Eisenthal
et al. It should be noted that Eisenthal e al. made no attempt to use
their regressor in a generative manner, as we do in this work.

The precise nature of the function that measures the attractiveness
of a face based on its image is still unclear. An analysis of the
beauty scores collected by Eisenthal et al. as a function of extracted
feature values has shown that a linear model accounts very poorly
for human attractiveness ratings. In the course of this research, we
also trained a number of different support vector regressors using
various kernels, linear and non-linear. We found linear models to
be significantly inferior to non-linear models, both in terms of their
best and their average performance, and use radial basis function
(RBF) kernels instead.

3 Beautification Engine

3.1 Support Vector Regression

Support Vector Regression (SVR) is an induction algorithm for fit-
ting multidimensional data [Vapnik 1995]. By using various ker-
nels, SVR can fit highly non-linear functions. An SVR is con-
structed by training it with a sparse set of samples (x,y), where
x € R? and y € R. Our beautification engine utilizes a SVR model
trained with the beauty scores gathered by Eisenthal er al. [2006].
Specifically, we used the same collection of scored facial images
to semi-automatically extract a total of 84 feature points from each
face (while Eisenthal et al. used only 37 feature points). The feature
points are located on the outlines of eight different facial features:
two eyebrows, two eyes, the inner and outer boundaries of the lips,
the nose, and the boundary of the face (see Figure 4a).

The mean (normalized) positions of the extracted feature points
(Figure 4b) are used to construct a Delaunay triangulation. The
triangulation consists of 234 edges, and the lengths of these edges
in each face form its 234-dimensional distance vector (Figure 4c).
The distances are normalized by the square root of the face area
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Figure 4: An example of the 8 facial features, composed of a total
of 84 feature points, used in our algorithm. (a) The output feature
points from the ASM search. (b) The scatter of the aligned 84 land-
mark points of our 92 sample training data (in red) and their average
(in blue) (c) The 234 distances between these points.

to make them invariant of scale. We work with distances between
feature points, rather than with their spatial coordinates, as such
distances are more directly correlated with the perceived attractive-
ness of a face. Furthermore, working with a facial mesh, rather than
some other planar graph imposes some rigidity on the beautification
process, preventing it from generating distances which may possess
a high score but do not correspond to a valid face.

The 234-dimensional feature vectors and their corresponding
beauty scores (on a scale of 1 to 7) are used as training samples
to construct a SVR model. The SVR defines a smooth function
f» : R® — R, which we use to estimate the beauty scores of dis-
tance vectors of faces outside the training set. Following extensive
experimentation, we chose a Radial Basis Function kernel, which
is capable of modeling the non-linear behavior expected for such a
problem. Model selection was performed by a grid search over the
width of the kernel o, the slack parameter C and the the tube width
parameter €. We used a soft margin SVR implemented in SVM/8"
[Joachims 1999].

Notice, that in contrast to the regressor described by Eisenthal et al.
[2006], our regressor makes no use of non-geometric features, such
as hair color, skin texture, etc. This reflects the difference between
our goals: whereas Eisenthal ef al. attempted to produce the most
accurate regressor based on all relevant features, our engine is de-
signed to modify only the geometry of the face, thereby making
non-geometric features irrelevant to the process. Thus, it was nec-
essary for us to adjust the beauty scores so as to discount the effect
of the non-geometric features. Specifically, we use linear regression
to model the effect of the non-geometric features that were identi-
fied by Eisenthal et al. as strongly correlated with the beauty score.
Our regressor was then trained on the difference y = yorig — Yiin»
where y,;g are the original scores, and yj;, is the linear regression
estimate, based on the non-geometrical features above.

3.2 The beautification process

Let v denote the normalized distance vector extracted from an in-
put facial image. The goal of the beautification process is to gen-
erate a nearby vector v/ with a higher beauty score fj,(v') > f},(v).
Since many points in our 234-dimensional feature space do not cor-
respond to distance vectors of faces at all, our main challenge is to
keep the synthesized vectors v’ inside the subspace of valid faces.
Many vectors in this space could possess a higher score, but any
such vector must be projected back into the subspace of valid faces,
and the score might be reduced in the process. Our assumption is
that f;, is smooth enough to allow climbing it incrementally using
local optimization techniques.

We experimented with two complementary techniques to achieve
this objective: one is based on weighted K-nearest neighbors
(KNN) search (Section 3.3), the other is an SVR-driven optimiza-
tion (Section 3.4).

Assuming that face space is locally convex, the KNN-based method
guarantees that the resulting beautified faces lie within this space.
In the SVR-based method we optimize a given face according to
our beauty function, fj. Since the latter method does not assume
local convexity, it has a more fundamental flavor. However, since
the problem is very sparse, and since the SVR is trained on a rather
small sample, the regression function could exhibit strong artifacts
away from the regions populated by the training samples. There-
fore, we constrain the search to a compact region in face space by
applying regularization.

3.3 KNN-based beautification

We found that an effective way of beautifying a face, while main-
taining a close resemblance to the original is to modify the distance
vector of the face in the direction of the beauty-weighted average of
the K nearest neighbors of that face. We found the beauty scores of
faces modified in this manner to be typically higher than those re-
sulting from moving towards the global unweighted average. This
is in line with reports from the psychology literature that compos-
ites of beautiful faces were rated as more attractive than an average
composite face [Alley and Cunningham 1991; Perrett et al. 1994].

More specifically, let v;, and b; denote the set of distance vec-
tors corresponding to the training set samples, and their associated
scores, respectively. We define the beauty-weighted distances w;,
for a given distance vector v, as
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where b; gives more weight to the more beautiful samples. The best

results are obtained by first sorting {v;} such that w; > w;;|, and

then searching for the value of K maximizing the SVR beauty score
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The plot in Figure 5 shows how the beauty score changes for dif-
ferent values of K. Note that the behavior of the beauty score is
non-trivial. However, in general, we found small values of K to
produce higher beauty scores than that of the average face. Some
examples of KNN-beautified faces with different choices of K are
shown in Figure 6.

Rather than simply replacing the original distances v with the beau-
tified ones v/, we are able to produce a more subtle beautification
effect, trading off the degree of the beautification for resemblance to
the original face, by linearly interpolating between v and v before
performing the distance embedding described in Section 5.

3.4 SVR-based beautification

The SVR-based beautification is a numerical optimization treating
the SVR beauty function as a potential field over the distance vec-
tors feature space. Thus, f}, is used directly to seek beautified fea-
ture distance vectors. Whereas the KNN-based approach only pro-
duces convex combinations of the training set samples, SVR-based
optimization is limited by no such constraint. Figure 6 demon-
strates the differences between KNN-based and SVR-based beauti-
fication.
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Figure 5: The beauty score is plotted as a function of K in our
KNN-based technique applied to one of the faces in our database.
The optimal value of K is 5 with an associated SVR beauty score of
5.03. The initial beauty score for this face is 4.38, and the simple
average score (K—o0) is 4.51. Our SVR-based beautifier succeeds
in finding a distance vector with a higher score of 5.20.

Figure 6: From left to right: original face, KNN-beautified with
K = 3, KNN-beautified with optimal K, SVR-beautified.

Formally, the beautified distance vector v’ is defined as follows:

v/ = argmin E(u), where E(u) = —f,(u). 3)

u

We use the standard no-derivatives Direction Set Method [Press
et al. 1992] to numerically perform this minimization. To accelerate
the optimization, we perform PCA on the feature space to reduce
the dimensionality from 234 to 35, and apply the minimization in
the low dimensional space. Note that we start the optimization with
the original distance vector v as the initial guess. Thus, the result
of the optimization is typically some local minimum nearby to v.
Therefore, applying the process to different faces yields different
results.

For the majority of the facial images we experimented with, using
only the beauty function as a guide produces results with higher
beauty scores than the KNN-based approach. However, for some
samples, the SVR-based optimization yields distance vectors which
do not correspond to valid human face distances. To constrain the
search space, we regularize the energy functional (Eq. 3) by adding

a log-likelihood term (LP):
E(u) = (0 —1)fp(u) — aLP(u), 4)

where « controls the importance of the log-likelihood term. This
technique is similar to the one used by [Blanz and Vetter 1999].
We found that a value of & = 0.3 is sufficient to enforce probable
distance vectors.

The likelihood function P is approximated by modeling face space
as a multivariate Gaussian distribution. When projected onto the
PCA subspace, P may be expressed as
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where A; denotes the i-th PCA eigenvalue and f; denotes the i-th

component of @, the projection of u onto the PCA space. Therefore,
the log-likelihood term becomes

B2
LP(a) = Z zﬁi + const, (6)

where the constant term is independent of @ and can thus be omitted
from the optimization of (4).

4 Facial Feature Extraction

Extracting the distances vector from a facial image involves the
non-trivial task of automatically identifying the facial feature
points. The feature points are located on the prominent facial fea-
tures (see Figure 4). Each of these features is approximated by a
spline. There is extensive literature that deals with the task of snap-
ping such splines to their corresponding facial features. The reader
is referred to [Zhao et al. 2003] for a survey of these techniques.

In our work we use the Bayesian Tangent Shape Model (BTSM)
[Zhou et al. 2003], a technique that improves on the well-known
Active Shape Model (ASM) [Cootes et al. 1995]. ASM consists of
a point distribution model capturing shape variations of valid ob-
ject instances, and a set of grey gradient distribution models, which
describe local texture of each landmark point. The model is con-
structed using a training set, and its parameters are actively updated
as new examples are added. This bootstrapping process is semi-
automatic. At the early stages of the training, considerable user
intervention is necessary, but as the training set increases, user as-
sistance is only rarely required.

Given a new facial image, the ASM algorithm requires an initial
guess for the locations of the landmarks. The average shape is a
good choice, yet finding the initial scale and orientation greatly im-
proves the accuracy of the detected locations and reduces the need
for manual adjustments. For this purpose we use the OpenCV Haar
classifier cascade [Bradski 2000].

Our ASM training set consists of 92 samples, each containing 84
landmarks. The distribution of these landmarks is illustrated in Fig-
ure 4(b) over one of the facial images in the training set. To process
a new facial image it is first analyzed and its feature landmarks are
extracted in the same way as was done for the training images. In
most cases, the input image analysis is fully automatic. In rare cases
some user intervention is required, typically, when large parts of the
face are occluded by hair.

5 Distance Embedding and Warping

The beautification engine yields a modified distance vector v'. We
must now convert these distances to a set of new facial landmarks.



Figure 7: Beautification examples. Top row: input portraits; Bottom row: the results produced by our method.

Since v’ is not guaranteed to correspond to distances of edges in
a planar facial mesh we seek the target landmark positions g; =
(xi,y;) that provide the best fit, in the least squares sense, for the
distances in V. Formally, we define

2
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where e¢;; is our facial mesh connectivity matrix. To reduce non-
rigid distortion of facial features, we set «;; to 1 for edges that
connect feature points from different facial features, and to 10 for
edges connecting points belonging to the same feature. The target
distance term d;; is the entry in v’ corresponding to the edge e;;.

The target landmark positions ¢; are obtained by minimizing E.
This kind of optimization has been recently studied in the context of
graph drawing (e.g., [Cohen 1997]). It is referred to as a stress min-
imization problem, originally developed for multidimensional scal-
ing [Sammon 1969]. We use the Levenberg-Marquardt (LM) al-
gorithm to efficiently perform this minimization [Levenberg 1944;
Marquardt 1963; Lourakis 2004]. This is an iterative non-linear
minimization algorithm which requires reasonable initial positions.
However, in our case, the original geometry provides a good initial
guess, since the beautification always modifies the geometry only
minutely.

The embedding process has no knowledge of the semantics of facial
features. However, human perception of faces is extremely sensi-
tive to the shape of the eyes. Specifically, even a slight distortion
of the pupil or the iris into a non-circle shape significantly detracts
from the realistic appearance of the face. However, such a distortion
is not captured by our beauty function. Therefore, we add a post-
process that enforces a similarity transform on the landmarks of the
eyes, independently for each eye. We solve a linear least squares
problem in the four free variables of the similarity transform
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minimizing ¥ ||Sp; — g;||* for all feature points of the eyes, where
pi are original landmark locations, and ¢; are their corresponding

embedded positions (from Eq. 7). Then Sp; replaces g; to preserve
the shape of the original eyes. Both the embedding and the similar-
ity transform might perturb the distances vector away from the one
produced by the beautification engine, in turn affecting its beauty
score. In our experience the score drop due to the embedding is very
small (0.005 on average). Applying the similarity transform causes
an additional decrease in the beauty score (0.232 on average), but it
is essential to the realistic appearance of the result.

5.1 Image Warping

The distance embedding process maps the set of feature points {p; }
from the source image to the corresponding set {g;} of target posi-
tions. Next, we compute a warp field that maps the source image
into the target one according to this set of correspondences. For this
purpose, we adapted the multilevel free-form deformation (MFFD)
technique introduced by Lee et al. [1996]. The warp field is illus-
trated in Figure 3, where the source feature points are shown in blue
and the corresponding target positions are in red.

The MFFD consists of a hierarchical set of free-form deformations
of the image plane where, at each level, the warp function is an FFD
defined by B-spline tensor products. The advantage of the MFFD
technique is that it guarantees a one-to-one mapping (no foldovers).
However, this comes at the expense of a series of hierarchical warps
(see [Lee et al. 1996] for details). To accelerate the warping of high
resolution images, we first unfold the explicit hierarchical compo-
sition of transformations into a flat one by evaluating the MFFD on
the vertices of a fine lattice.

6 Results

To demonstrate our technique we have implemented a simple inter-
active application, which was used to generate all of the examples
in this paper. After loading a portrait, the application automatically
detects facial features, as described in Section 4. The user is able to
examine the detected features, and adjust them if necessary. Next,
the user specifies the desired degree of beautification, and the ap-
plication computes and displays the result within a few seconds. A



Figure 8: Beautification of faces that were not part of the training face sets for which facial attractiveness ratings were collected. The four
leftmost faces were taken from the AR database [Martinez and Benavente 1998], while the two on the right were obtained from other sources.
Top row: input portraits; Bottom row: the results produced by our method.

video demonstrating the application is included on the ACM SIG-
GRAPH 2008 Full Conference DVD-ROM.

We used two training sets of portraits with accompanying attrac-
tiveness ratings (92 female and 33 male portraits) to train our SVR
regressors, as described in Section 3.1, and experimented with both
KNN-based and SVR-based beautification. We found the SVR-
based method to perform better overall on the female faces (see
table 1), but on the male faces the KNN-based method performed
better. The possible reasons for this are: (i) the male training set was
considerably smaller (33 vs. 92), (ii) it did not contain any excep-
tionally attractive male faces, and (iii) the notion of male attractive-
ness is not as well established as that for females, so the consensus
in the attractiveness ratings was less uniform for males. Therefore
all of the female results shown in this section were generated using
SVR, while all the male results used KNN.

Original portrait 3.37(0.49)
Warped to mean 3.75 (0.49)
KNN-beautified (best) | 4.14 (0.51)
SVR-beautified 4.51 (0.49)

Table 1: Mean beauty scores for several beautification alterna-
tives (the standard deviation is shown in parentheses). Recall that
the beauty score that we use was found to have good correlation
with human ratings (for females) in an independent previous study
[Eisenthal et al. 2006]

Figure 7 shows a number of input portraits (from the training set)
and their corresponding beautified versions. The degree of beau-
tification in all these examples is 100 percent, and our beautifica-
tion process increases the SVR beauty score by roughly 30 percent.
Note that in each of these examples, the differences between the
original face and the beautified one are quite subtle, and thus the
resemblance between the two faces is unmistakable. Yet the subtle
changes clearly have a substantial impact on the attractiveness of
these faces.

The faces shown in Figure 7 are taken from the training set of 125
faces, which were photographed by professional photographers.
However, the resulting beautification engine generalizes well to
faces outside that set. This is demonstrated by the examples in Fig-
ure 8. The four leftmost faces were taken from the AR database

[Martinez and Benavente 1998]. Note that the photographs of this
open repository appear to have been taken under less than ideal il-
lumination conditions. The other two images were obtained from
other sources.

In some cases, it is desirable to let the beautification process modify
only some parts of the face, while keeping the remaining parts in-
tact. We refer to this mode as beautification by parts. For example,
the user may request that only the eyes should be subject to beauti-
fication (see Figure 9(a—c)). This example nicely demonstrates that
sometimes a small local adjustment may result in an appreciable
impact on the facial attractiveness. Figure 9(d—f) is another exam-
ple of beautification by parts, where all of the features except the
rather unique lips of this individual were subject to adjustment. To
perform beautification by parts we only use those distances where
at least one endpoint is located on a feature designated for beauti-
fication. This reduces the dimensionality of our feature space and
enables the algorithm to search only among the beautified features.
This technique implicitly assumes that features that are part of an
attractive face are attractive on their own.

As mentioned earlier, it is possible to specify the desired degree
of beautification, with 0 percent corresponding to the original face
and 100 percent corresponding to the face defined by the beautifica-
tion process. Degrees between 0 and 100 are useful in cases where
the fully beautified face appears too different from the original, as
demonstrated in Figure 10.

The beauty scores that we used were gathered using frontal portraits
of young Caucasian males and females with a neutral expression.
Thus, our tool cannot be expected to perform well on facial images
that do not share these characteristics. For example, it will not, in
general, enhance the attractiveness of children’s faces, as demon-
strated in Figure 11. However, the tool may be extended to handle
these cases, as well as additional ethnic or age groups, simply by
gathering a sufficient amount of beauty rankings from suitable col-
lections of portraits.

Empirical Validation

Our beautification technique is able to improve the facial attrac-
tiveness of a large proportion of the faces we experimented with.
However, there are also cases where the beautifier simply does not
introduce any appreciable change. To objectively validate our beau-



Figure 9: Beautification by parts: (a,d) original image, (b,e) full
beautification, (c) only the eyes were designated for beautification,
and (f) the mouth region was excluded from beautification.

(b)

Figure 10: Varying the degree of beautification: (a) original im-
age, (b) 50 percent, and (c) 100 percent, where the differences with
respect to the original image may be too conspicuous.

tification procedure we have conducted an experiment in which hu-
man raters were presented with 92 pairs of faces (original and beau-
tified) of males (45 faces) and females (47 faces). The raters were
asked to indicate the more attractive face in each pair. The positions
of the faces in each pair (left or right) were determined randomly,
and the 92 pairs were shown in random order. All of the 92 original
faces were obtained from the AR face database [Martinez and Be-
navente 1998]. 68 raters, males and females aged between 25 and
40 participated in the experiment.

As could be expected, the agreement between raters is not uniform
for all portraits. For all 47 portraits of females, the beautified ver-
sions were chosen as more attractive by most raters, and in half of
the cases the beautified versions were preferred by more than 80
percent of the raters. As for the male portraits, 69 percent of the
beautified versions were chosen as more attractive. Notice that this
result, although not as striking as that for females, is still statisti-
cally significant (P-value = 0.006). The possible reasons for this
difference were already explained earlier.

We also performed an experiment to determine whether our SVR-
based beautification is more effective than the simpler alternative
of using the mean positions of the facial features (which requires
neither beauty scores, nor optimization). Using the same setup

Figure 11: A portrait of a child (left) and the result produced by our
method using a regressor trained using adult females (right). The
result is unlikely to be considered more attractive by the average
observer.

as above, 47 pairs of female portraits were presented to 21 raters.
In each pair, one image was SVR-beautified, while the other was
warped to the mean. We found that 17 (out of 21) raters preferred
the SVR result over the alternative for a majority of the faces. This
finding is statistically significant (P-value = 0.0015 under the null
hypothesis of indifference). Furthermore, looking at the choices
raters made for each face, we found that for 36 (out of 47) faces
most raters preferred the SVR result, while the alternative result
was preferred for only 11 faces (P-value = 9.8 x 1072).

7 Conclusions and Future Work

We have developed a digital face beautification method based on
an optimization of a beauty function modeled by a support vector
regressor. Our challenge was twofold: first, the modeling of a high
dimensional non-linear beauty function, and second, climbing that
function, while remaining within the subspace of valid faces.

Currently, our technique is limited to faces in frontal views and
with a neutral expression only. Extending our technique to handle
general views and other expressions is a challenging direction for
further research.

In our work we restrict ourselves to manipulating only the geome-
try of the face. However, as was mentioned earlier, there are also
important non-geometric attributes that have a significant impact on
the perceived attractiveness of a face. These factors include color
and texture of hair and skin, and it would be interesting to investi-
gate how changes in these attributes might be incorporated in our
digital beautification framework.

Finally, it should be noted that the goal of our research was not
to gain a deeper understanding of how humans perceive facial at-
tractiveness. Thus, we did not attempt to derive specific explicit
beautification guidelines, such as changing the shape of the lips in
a particular manner, or changing the size of the eyes. Instead, we
attempted to develop a more general methodology that is based on
raw collected beauty scores. It is our hope, however, that percep-
tual psychologists will find our technique useful in their quest to
better understanding of the perception of beauty. Furthermore, as
mentioned earlier, we hope to extend our approach to data-driven
enhancement of the aesthetics of other shape classes.
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