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Figure 1: A view of a large urban model consisting of 26.8M triangles. In the left image, the parts visible from a region located at the junction
of two streets (in green) are colored. In the right image, only the buildings with some visible parts are displayed.

Abstract

From-region visibility culling is considered harder than from-point
visibility culling, since it is inherently four-dimensional. We
present a conservative occlusion culling method based on factor-
izing the 4D visibility problem into horizontal and vertical compo-
nents. The visibility of the two components is solved asymmetri-
cally: the horizontal component is based on a parameterization of
the ray space, and the visibility of the vertical component is solved
by incrementally merging umbrae. The technique is designed so
that the horizontal and vertical operations can be efficiently real-
ized together by modern graphics hardware. Similar to image-based
from-point methods, we use an occlusion map to encode visibility;
however, the image-space occlusion map is in the ray space rather
than in the primal space. Our results show that the culling time
and the size of the computed potentially visible set depend on the
size of the viewcell. For moderate viewcells, conservative occlu-
sion culling of large urban scenes takes less than a second, and the
size of the potentially visible set is only about two times larger than
the size of the exact visible set.
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1 Introduction

Rendering large scenes in real time remains a challenge as the com-
plexity of models keeps growing. Visibility techniques such as oc-
clusion culling can effectively reduce the rendering depth complex-
ity. Methods that compute the visibility from a point are necessarily
applied in each frame during rendering [Greene et al. 1993; Coorg
and Teller 1996; Zhang et al. 1997; Hudson et al. 1997; Bittner et al.
1998]. Recently, based on earlier methods [Airey et al. 1990; Teller
and Sequin 1991; Teller 1992a; Funkhouser et al. 1992], more at-
tention is devoted to from-region methods where the computed visi-
bility is valid for a region rather than a single point [Cohen-Or et al.
1998; Saona-Vazquez et al. 1999; Gotsman et al. 1999; Durand
et al. 2000; Schaufler et al. 2000; Wonka et al. 2000]. These meth-
ods take advantage of time and spatial coherence, and the compu-
tational cost of the visibility calculations is amortized over consec-
utive frames. Still, it is desirable to be able to compute from-region
visibility on-the-fly, not having to resort to off-line methods that
require excessive storage space.

The from-region visibility problem is considered harder than
the from-point visibility one. To decide whether an object S is
(partially) visible or occluded from a region C requires detecting
whether there exists at least a single ray that leaves C and intersects
S before it intersects an occluder. This is inherently a 4-dimensional
problem [Teller 1992b; Durand 1999]. Although exact solutions are
possible [Bittner and Prikryl 2001; Nirenstein et al. 2002], they are
overly expensive. Conservative solutions [Cohen-Or et al. 1998;
Saona-Vazquez et al. 1999; Durand et al. 2000; Schaufler et al.
2000; Wonka et al. 2000] gain speed-up by overestimating the ex-
act visibility set. Other methods are restricted to dealing with 2.5D
scenes [Koltun et al. 2001; Bittner et al. 2001; Wonka et al. 2001].
The assumption of 2.5D occluders is quite reasonable in practice,
especially in walkthrough applications where architectural models
can be well approximated conservatively by 2.5D shapes. However,
for more general scenes, it is necessary to have a culling method
that can deal with the occlusion of a larger domain of shapes.

Advanced graphics cards have a visibility feature which indi-
cates whether a just drawn polygon is visible or hidden by the
polygons already drawn. This feature is designed to accelerate
from-point visibility [Scott et al. 1998; Klosowski and Silva 2001;
Staneker et al. 2002]. The technique we present here utilizes this
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Figure 2: Boolean operations in dual space can be used to determine
visibility between two line segments. In (a), the orange segments
are mutually occluded by the blue segments. In (b), Boolean set op-
erations are applied to the double-wedge footprints to test visibility.
WA∩WC (in dark orange) represents all lines passing through both A
and C; thus, A and C are mutually hidden if and only if WA∩WC is
a subset of the union of occluder footprints (in blue).

and other capabilities of the latest graphics hardware to accelerate
the performance for from-region visibility.

The occlusion culling method we present in this paper handles
the occlusion cast by arbitrary 3D models. The idea is based on
factorizing the 4D visibility problem into two 2D components: a
horizontal component that is based on a parameterization of the
ray space and a vertical component, maintained by pairs of oc-
cluding angles. A key point in our solution is that the horizontal
components are represented as polygonal shapes which are drawn
in image-space. Each point in these polygonal footprints represents
a vertical slice in which the visibility is simple to solve. Thus, us-
ing modern graphics hardware, these polygonal footprints can be
drawn, while applying per-pixel visibility calculations, to gain a
significant speed-up.

1.1 Occluder fusion

The pioneering work in visibility [Airey et al. 1990; Teller and Se-
quin 1991; Teller 1992a; Funkhouser et al. 1992] was dedicated to
architectural indoor scenes. Then, early generic from-region meth-
ods were either based on the occlusion of a single occluder [Cohen-
Or et al. 1998; Saona-Vazquez et al. 1999] or approximated [Gots-
man et al. 1999]. To better capture the occlusion and reduce the
visibility set it is necessary to detect objects that are hidden by a
group of occluders. Advanced from-region methods [Durand et al.
2000; Schaufler et al. 2000; Wonka et al. 2000; Koltun et al. 2000]
aim at aggregating individual umbrae into a large umbra capable of
occluding larger parts of the scene.

There are two main approaches for aggregating umbrae. The first
approach uses ray-parameterization to capture the visibility of an
object into some geometric region (usually a polygonal footprint)
and apply Boolean operations to determine visibility [Koltun et al.
2001; Bittner and Prikryl 2001]. The second approach fuses indi-
vidual intersecting umbrae into large umbrae [Durand et al. 2000;
Schaufler et al. 2000]. The algorithm described in this paper com-
bines these two approaches. We elaborate on them below.

Visibility problems and in particular occlusion problems are of-
ten expressed as problems in line spaces. For example, the follow-
ing is a basic occlusion problem. Given a segment C, an object A
is occluded from any point on C by a set of objects Bi, if all the
lines intersecting C and A also intersect the union of Bi. Using the
line space, lines in the primal space are mapped to points. The
mapping between 2D lines and points is commonly defined by the
coefficients of the lines in the primal space. The line y = ax + b
is mapped to the point (a,−b) in the line parameter space. All the
lines that intersect segment A in the primal space are mapped to a
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Figure 3: Example of occlusion due to non-intersecting umbrae.
The brown object is fully occluded only by the aggregation of the
umbrae of all occluders. However, none of the individual umbrae
intersect.

double wedge in the parameter space, called the footprint of A. All
the lines intersecting the union of segments Bi are mapped to the
union of their footprints. All the lines passing through two given
segments A and C are mapped to the intersections of the footprints.

The above occlusion problem can be expressed as a simple
Boolean set operation on the footprints (see Figure 2). In 2D these
footprints can be discretized and drawn as polygons, and their inter-
section can be applied in image space, using fast per-pixel Boolean
operations. However, the above-mentioned choice of mapping is
not optimal since vertical lines are mapped to infinity. This re-
sults in serious problems for all lines with large coefficients since,
for practical reasons, the dual space must be bounded. Moving
to higher dimensions or using a projective space can alleviate this
problem [Bittner et al. 2001], but it loses the simplicity and effi-
ciency of operating in image space.

A direct extension of the above ideas to the 3D case [Teller
1992b; Nirenstein et al. 2002] is not as easy as in the 2D case since
the parameter space of 3D lines has high dimensionality. In general,
3D lines have four degrees of freedom. In addition, another dimen-
sion is required to specify the origin of the lines, which are thus re-
garded as rays. The visibility in 2D flatland is of limited interest. It
is important to note that it might be the case that most of the objects
are detected as occluded in flatland, while actually being visible
in 2.5D due to their various heights. However, Koltun et al. [2001]
successfully used 2D visibility to solve a 2.5D problem, and Bittner
et al. [2001] used 2D visibility to quickly detect the set of potential
occluders for a given 2.5D object.

A different approach for occluder fusion is to incrementally con-
struct an aggregate umbra in primal space. An occluder fusion oc-
curs whenever individual umbrae intersect [Schaufler et al. 2000;
Durand et al. 2000]. It should be noted that umbra intersection is
a sufficient condition but not a necessary one; see Figure 3, where
three non-intersecting umbrae yield a large aggregate umbra.

Occluder fusion algorithms based on umbra intersection are re-
alized in discrete space. Schaufler et al. [2000] maintain discretized
versions of the umbrae and extend them by generating large boxes
that intersect the discrete umbrae. Durand et al. [2000] use discrete
projection planes placed near each occluder to capture their umbrae.
Umbra fusion is accomplished by projecting the projected planes
from one to the next based on a discrete convolution operation.

Our conservative solution combines both of the above tech-
niques. We use a ray space technique (horizontally) combined with
an umbra merging occluder fusion technique (vertically).

1.2 Overview

Our technique is based on a factorization of 4D visibility into hor-
izontal and vertical components. First we define a bounded non-
singular parameterization for the 2D horizontal component by a
vertical (axonometric) projection of the objects onto the ground
(z = 0 plane). In Section 2 we show that the footprint of the pro-
jected object is composed of a few polygons in the parameter space.

Each point (s, t) in the parameter space represents a horizontal
direction. All the rays in the 3D primal space that agree with a given
(s, t) direction define a vertical slice, which we call the directional
plane (see Figure 4). Note that the intersection of a triangle with



Figure 4: The directional plane P(s, t) and the directional umbra.
P(s, t) is the vertical plane defined by the horizontal ray direction
(s, t). The intersection of a polygon with P(s, t) is a line segment
which casts a directional umbra with respect to the viewcell.

the directional plane is a line segment, and it casts a directional um-
bra. For each directional plane we maintain an aggregated umbra
created by the occluders. The aggregated umbra for all horizontal
directions is maintained in the occlusion map. A hierarchical front
to back traversal of the objects is used to perform visibility queries
and to update the occlusion map. The footprints of the objects are
conservatively discretized and drawn by the graphics hardware, and
the occlusion map is represented by a discrete ray space.

The rest of the paper is organized as follows. First, in Section 2
we describe the 2D (horizontal) parameterization in detail. Sec-
tion 3 explains the treatment of the vertical component. In Section 4
we show how to combine the horizontal and vertical components to
solve the visibility in 3D. The hardware implementation details are
described in Section 5 and results are presented in Section 6.

2 Ray parameterization

The common duality of R
2 is a correspondence between 2D lines

y = ax+b in the primal space and points (a,−b) in the dual space.
This parameterization is unbounded, which prevents its simple dis-
cretization. We present a different parameterization of 2D lines. We
choose to parameterize only the oriented lines (rays) that emerge
from a given 2D square viewcell. This parameterization does not
have singularities and the parameter space is bounded. In addition,
as shown below, all the rays that leave the viewcell and intersect a
triangle, form a footprint in the parameter space that can be repre-
sented by a few polygons.

2.1 The parameter space

Given a square viewcell, a representation of rays that originate from
this viewcell is defined as follows. Each ray is represented by
its two intersections with two concentric squares: an inner square
(which is the viewcell) and an outer square (see Figure 5(a)). This
representation can be regarded as the 2D case of the two-plane pa-
rameterization using multiple slabs [Gortler et al. 1996; Levoy and
Hanrahan 1996].

Parameters s and t are associated with the inner and outer
squares, respectively (see Figure 5(a)). They are assigned an ar-
bitrary range, for example, the unit square 0 ≤ s, t < 1. We choose
the size of the outer square edge to be of about twice the size of
the inner square edge. Any ray that starts inside the viewcell must
intersect both the inner and outer squares. Thus, each such ray r
is represented by a pair of parameters sr and tr that correspond to
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Figure 5: The footprint of a point is a line segment. The rays pass-
ing through a point in the primal space (in (a)) are mapped to line
segments in the parameter space (b). The rays passing through a
segment A in the primal space are mapped to the area bounded by
the two footprints of the endpoints of A.

its intersections with the inner and outer squares, respectively. The
parameter space is bounded and each ray has a mapping.

The intersection point t of a ray with the outer square is either on
a vertical edge or a horizontal edge. We choose to map the ray only
to points (s, t) such that the edges of the inner and outer squares
associated with s and t, respectively, are parallel. This parameteri-
zation still captures all emanating rays, since each ray intersects at
least one parallel inner and outer edge pair. It is also possible that
the same ray intersects the inner square twice on parallel edges, at
s1 and s2. We choose to map such rays to two points (s1, t1) and
(s2, t1) to avoid the need to distinguish between them. It should be
noted that although some rays are mapped to two points, the repre-
sentation is still unique.

2.2 The footprint of a 2D triangle

Let us define the footprint of a geometric primitive as the set of
all points in the parameter space that refer to rays that intersect the
primitive. We will now describe the shape of the footprint of a
point, a segment and finally a triangle.

All the rays that intersect some point q are mapped to a set of
segments in the parameter space. To compute the footprint of q
we need to consider the eight pairs of parallel edges of the squares.
Each pair defines a line tq(s) = αs+β in the parameter space. Since
the range of both s and t is bounded, the footprint of q is a segment
on the line tq(s) bounded by the domain of s and t (see Figure 5(b)).

The footprint of a segment A = q1q2 is a set of polygons in
the parameter space. Let us look at each pair of parallel edges of
the parameter squares separately, and capture the rays that hit the
parallel edges and the segment. For a fixed value of s on the in-
ner edge, the range of corresponding t’s defines a vertical segment
{(s, t) : t ∈ [tq1

(s), tq2
(s)]} in the parameter space (see Figure 5).

Since tq1
(s) and tq2

(s) are linear functions of s, the set of the vertical
segments of all s defines a polygon (maybe non-simple) in the pa-
rameter space. Given an arbitrary segment, its footprint consists of
up to six polygons out of the eight possible pairs of parallel square
edges. However, in most cases no more than four are required.
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Figure 6: The subdivision of the footprint of a triangle. (a) The
orthographic projection of the triangle. Each vertex has a distinct
color. (b) Part of the parameter space footprint. The line segments
are shown in the same color as their corresponding vertices. The
footprint is divided into different regions, each region representing
rays that have the same pair of entry and exit edges. The color of
each region corresponds to the vertex that is shared by both edges.

The footprint of a 2D triangle is the union of the footprints of
its edges. In general, the triangle is subdivided into three regions
according to the pairs of entry and exit edges, and the footprint of
each region is generated as above (see Figure 6).

3 Visibility within a vertical plane

So far we have shown the first part of our factorization, that is, the
parameterization of horizontal rays leaving a viewcell and passing
through a 2D triangle. Now we continue to describe the second
part of the factorization – the visibility within a vertical directional
plane. We traverse the cells of a kd-tree in a front-to-back order
and interleave occlusion tests against the occlusion map and umbra
merging to maintain it. It consists of: (i) How to perform visibility
queries, and (ii) How to perform occluder fusion.

3.1 Vertical visibility query

Let (s, t) be a point in the parameter space representing some fixed
horizontal ray. We denote by P(s, t) the vertical plane that cor-
responds to that direction, and by K the intersection of the axis-
aligned viewcell with P(s, t) (see Figure 7). Let R be an arbitrary 3D
triangle; the line segment B = p1 p2 is its intersection with P(s, t).
The segment B casts a directional umbra with respect to K within
P(s, t), which is defined by the supporting lines �t and �b (“t” stands
for top and “b” for bottom, see Figure 7). The two values αt and
αb denote the supporting-angles corresponding to �t and �b, respec-
tively. These two values encode the directional umbra of B within
the vertical plane P(s, t). The angle values are represented by their
tangents as functions of (s, t) (see the appendix). Hereafter we refer
to these values as angles while we mean their tangents.

Let Q be some other line segment within P(s, t) that is behind B
according to the front-to-back order with respect to the viewcell.
Determining whether Q is occluded by B translates into testing
whether the umbra of B contains Q. This test is fairly simple us-
ing the pair of supporting-angles as it only requires testing whether
both endpoints of Q are inside the umbra of B. This is done by com-
paring the supporting-angles of B with those of Q, as illustrated in
Figure 8. The front-to-back order guarantees that the tested seg-
ment is always behind the occluders; therefore the supporting lines
are sufficient for the visibility test.

3.2 Occluder fusion

In the vertical directional plane, umbra aggregation is performed by
testing umbra intersection and fusing occluders. In general, the sup-

Figure 7: The directional plane. P(s, t) is the vertical plane that cor-
responds to the horizontal direction (s, t). Its intersection with the
viewcell is the rectangle K, and the intersection with the triangle R
is the segment B = p1 p2. The directional umbra of B with respect
to K is defined by the supporting lines �t and �b or, alternatively, by
the supporting angles αt and αb. The horizontal visibility compo-
nent of R is computed by parameterizing the horizontal rays that hit
R′ (the orthogonal projection of R onto the ground).

Figure 8: Visibility test within a vertical plane. The accumulated
umbra is represented by the supporting angles αt and αb corre-
sponding to the supporting lines �t and �b, respectively. The line
segment Q is occluded if both of its endpoints are within the accu-
mulated umbra, i.e. βt ≤ αt and βb ≥ αb.

porting lines alone do not uniquely describe the umbra. As depicted
in Figure 9(a), adding the separating lines to the representation de-
fines the umbra uniquely by pinpointing the endpoints, and allows
to test whether the umbrae intersect. Whether the umbra of Q in-
tersects the umbra of B, can be determined by a series of simple
angle comparisons of Q and B (see Figure 9). If umbra intersection
occurs, Q and B can be fused into a new “virtual occluder” segment
that represents the aggregated occlusion of Q and B. Figure 9(g–h)
describes how to create this segment. It is important to note that the
fused umbra is valid only for testing occlusion of ocludees placed
behind all the occluders that created the umbra.

Note that the test of merging the umbra of Q with the umbra of
B is order-independent. Since often Q does not merge with B, we
maintain B as the union of a number of umbrae Bi. Either Q merges
with one of the Bi or it creates another umbra component. We be-
lieve that typically, a small number of umbrae is enough to converge
into a large augmented umbra, but the number of Bi’s required is
often order-dependent. Processing adjacent or nearby triangles is
likely to rapidly merge small umbrae into one larger umbra. Thus,
an approximate ordering of the occluders is more efficient. This im-
plies that maintaining only a small number of umbra components,
possibly even a single one, might not be too conservative. The visi-
bility test based on a small number of umbrae is conservative, since
if an object is visible, its footprint is not fully contained in the full
aggregated umbra, and therefore cannot be contained in any of its
subsets. In particular, for the scenes with low vertical complexity
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Figure 9: (a) Representing umbrae solely by the supporting lines does not provide a unique definition. The segments A and B have the same
supporting lines, though they cast different umbrae. Adding separating lines pinpoints the location of the endpoints of the segment, thus
defining the umbra uniquely. (b)–(h) Different cases of occluder fusion within a vertical slice. The separating lines are dashed and supporting
lines are solid. The supporting angles of the segments are αt , αb (red) and βt , βb (blue). Separating angles are denoted by ᾱt , ᾱb, β̄t , β̄b.
In cases (b)–(d), the umbra of one segment is contained in the area between the supporting lines of the other segment, therefore the first
segment’s occlusion makes no contribution even if the two umbrae intersect. This case happens when αt < βt and αb > βb (or vice versa, i.e.
α ↔ β ). In such a case we “throw out” the contained segment and keep just the other one. If the above comparison condition doesn’t hold,
we test whether we are in situations (e) or (f), where no umbra intersection occurs. The tests are: ᾱt > βt (e) or αb > β̄b (f). If these tests fail
as well, then there must be umbra intersection (g). We replace the two segments by a new “virtual” occluder segment (see the orange segment
in (g)), i.e. we insert into the occlusion map the following angles: γt = max{αt ,βt}, γb = min{αb,βb}, γ̄t = min{ᾱt , β̄t}, γ̄b = max{ᾱb, β̄b}
(see (h)). It is easy to prove that any ray that leaves the viewcell and intersects the new segment must be also blocked by at least one of the two
old segments. Thus, any occludee placed behind both old segments, is occluded by the virtual occluder iff it is occluded by the old segments.

that we tested, maintaining a single umbra in the occlusion map is
efficient enough in the sense that it captures most of the occlusion
and produces a tight PVS. In our current implementation, we ignore
the last umbra component that didn’t merge with the existing um-
bra. Typically man-made scenes have a strong vertical coherence
and after some umbra-merging steps, the umbra grows to capture
most of the occlusion. However, in true 3D models, with no prefer-
able orientation, such as a flying asteroid, maintaining only one
umbra is overly conservative and ineffective.

4 Putting it all together

In the previous section we described the visibility within a direc-
tional plane. We combine the two parts of our factorization: the ver-
tical (directional) visibility and the horizontal footprints, together
with front to back scene traversal, exploiting the fact that all the
directional (vertical) computations can be performed in parallel.

The footprints are conservatively discretized before rendering, as
in [Wonka and Schmalstieg 1999; Durand et al. 2000; Koltun et al.
2001]. Each pixel in the discrete footprint represents a directional
plane (s, t). We augment the “flat” discrete footprint of a given tri-
angle by adding four values {v0, ...,v3} to each of its pixels. These
values represent the four supporting and separating lines associated
with the triangle and the viewcell. More precisely, let R be a 3D
triangle and let R′ denote the vertical projection of R (see Figure 7).
Let F(R′) denote the footprint of R′ in the parameter space. Each
pair (s, t)∈F(R′) defines a directional plane P(s, t) that emanates
from the viewcell and intersects R′. Along each direction (s, t), the
occlusion of R is expressed by the two supporting angles αt(s, t)
and αb(s, t), and the two separating angles ᾱt(s, t) and ᾱb(s, t). In
the following, we denote these four values by vi = {v0, ...,v3}.

For each vi, the footprint F(R′) is augmented into a 3D (s, t,v)
parameter space, yielding four 3D footprints. These footprints are
surfaces, which can be computed using shading operations avail-

able on advanced graphics hardware. Alternatively, they can be
conservatively approximated using simple polygons (see the ap-
pendix for details). This enables the use of conventional graphics
hardware to generate them rapidly. Note that the discrete footprint
is a conservative discretization of the domain and the values of a
continuous function, rather than their sampling.

By conservatively discretizing the bounded parameter space, all
the per-(s, t) visibility operations, described in Section 3, are per-
formed using per-pixel operations supported by modern graphics
hardware. This takes advantage of the fact that the directional oper-
ations are independent of each other. The visibility tests and umbra
merging operations are performed in parallel across the parameter
space. In this setting the discrete occlusion map is an array, where
each of its entries contains a series of four values vi, that is, four
values for each umbra component. The details of the hardware im-
plementation are described in Section 5.

4.1 Hierarchical visibility culling

The original objects of the scene are inserted into a kd-tree. Dur-
ing the algorithm execution, the kd-tree has two functions. First, it
serves as a means to traverse the scene in a front-to-back order. Sec-
ond, it allows culling of large portions of the model. The kd-tree is
traversed top-down, so that early on, large kd-tree cells of the hier-
archy can be detected as hidden and culled with all their sub-trees.
If a leaf of the tree is still visible, then the visibility of each bound-
ing box associated with it is tested. If a bounding box is visible, the
triangles bounded in it are defined as potentially visible. In scenes
with significant occlusion, the objects close to the viewcell rapidly
fill the occlusion map, and most of the back larger kd-cells are de-
tected as hidden. We emphasize that the from-region front-to-back
order of the kd-cells is a strict order rather than approximate [Bit-
tner and Prikryl 2001]. The strict order is guaranteed by using large
kd-cells whose splitting planes never intersect any viewcells.



PVS← /0
CalculateVisibility(kd tree.root)

CalculateVisibilty(curr kd cell)
if TestVisibility(curr kd cell) // current kd-cell is visible

if cur kd cell.IsLeaf()
PVS← PVS ∪ curr kd cell.getTriangles()
AugmentOcclusionMap(curr kd cell.getTriangles())

else
foreach kd child ∈ curr kd cell.children in f2b order

CalculateVisibility(kd child)
end foreach

endif
else

return // current kd-cell occluded⇒ terminate
endif

end

Figure 10: Pseudocode of the overall occlusion culling scheme.

The umbra merging is applied while traversing the kd-tree front-
to-back. Whenever a leaf node is detected as visible, the polygons
in that leaf are considered as occluders and their footprints are in-
serted into the occlusion map, while possibly merging with the ex-
isting umbrae created so far during the traversal. Merging umbrae
simplifies the occlusion map and increases the occlusion. Option-
ally, before updating the occlusion map, the visibility of individual
polygons in the potentially visible leaf can be tested to tighten the
PVS. The pseudocode in Figure 10 summarizes the entire process.

5 Hardware implementation

We first describe a simpler scheme that uses only 2.5D occluders.
To handle 2.5D occluders we use a “half-umbra”, where only the
top supporting angle (αt ) is stored. The bottom supporting angle is
always zero, and no separating angles are needed since the occluder
umbrae always intersect. We encode αt using the z-coordinate of
the 2D footprint by conservatively linearly approximating it from
below/above for occluder/occludee, respectively, as described in the
appendix. Testing visibility of an occludee translates into testing the
visibility of its footprint while disabling z-buffer updates to protect
the occlusion map. This is accelerated using the hardware occlusion
flag. Umbra fusion is implemented by enabling z-buffer updates
and drawing the occluder footprint.

To handle 3D occluders we need to use a series of top and bot-
tom supporting and separating angles. However, due the limitation
of current available hardware, the occlusion map stores only a sin-
gle directional umbra per direction, compactly placed in different
regions of a single z-buffer. Testing visibility of an occludee trans-
lates into testing whether the top or bottom supporting footprints
are visible when rendered using the top/bottom occlusion map z-
buffers. Again, rendering is performed while z-buffer updates are
disabled. Umbra fusion is implemented by testing whether the new
umbra intersects the current umbra in the occlusion map. For a
given occluder, its four supporting and separating angles are re-
quired to be tested with the occlusion map. This is implemented
in two passes, where in the first one the stencil buffer is used to
mask locations where the umbra intersects, and in the second pass
the z-buffer is actually updated where the stencil test passes.

Note that this two-pass scheme is expensive since each occluder
needs to be drawn twice by the hardware. Our current implementa-
tion is reported for nVIDIA GeForce4 Ti graphics card. The nVIDIA
GeForce FX card allows more flexibility. Since we implemented it
only with an emulator, we cannot report the acceleration expected.

However, the GeForce FX card provides stronger fragment shader
functionality to support the calculation of the directional umbra
within each slice. In particular, tanα = H/L (see appendix) can
be computed without approximation.

Our implementation is using nVIDIA’s Cg shader language. We
use the available 32bit floating-point PBuffers (denoted occlu-
sionPB) to store the global occlusion map, thus allowing four 32bit
floating-point precision values in each (s, t) pixel to store the exact
vi values. We use an additional 32bit floating-point buffer (denoted
tempPB) for temporary storage. Augmenting the occlusion map
with the umbra of an occluder triangle R is performed as follows.
We use occlusionPB as input texture and tempPB for output. We
render the 2D footprint of R, thus triggering fragment-shader code
in (s, t) pixels that represent directional planes that intersect R. At
each such pixel, the fragment shader calculates the intersection seg-
ment of R and the corresponding directional plane, and extracts the
exact separating and supporting angles (vi values). The current um-
bra at each pixel is read from occlusionPB. The read occlusion an-
gles are compared to the newly calculated angles of R as explained
in Figure 9. Where fusion is possible, the fused umbra, represented
by four new vi values, is outputted to tempPB; otherwise the pixel
is killed. The above yields the set of pixels within tempPB con-
taining the fused umbra. Whether any umbra fusion has occurred is
identified by the occlusion query extension that tests if not all pixels
were killed. In that case, the 2D footprint is rendered again while
setting tempPB as input texture and occlusionPB as output. The
fragment shader simply copies the updated values to occlusionPB.

Testing the visibility of a potential occludee R is performed by
setting occlusionPB as input texture and tempPB as output. The
fragment-shader calculates only the vi values that represent sup-
porting angles, reads the occlusion supporting angles from occlu-
sionPB and performs the comparison between them as explained
in Figure 8. The shader kills the pixels that represent directional
planes wherein R is occluded and outputs some arbitrary value for
pixels where R is visible. The visibility test is performed by using
the occlusion query extension to test if not all pixels were killed.

As a future extension to support multiple umbrae per slice, we
suggest to pack 8 half-float (16 bit floating point) values in the 32bit
floating point PBuffers. This allows storing two umbrae per pixel
in the occlusion map. Another, more general approach would be
to use multiple 32bit floating point PBuffers to store the occlusion
map. However, since it is currently not possible to output to more
than a single buffer, augmenting such an occlusion map probably
requires multiple rendering passes which is thus overly expensive.

6 Results

We have implemented the technique and integrated it into a hi-
erarchical occlusion culling mechanism based on a kd-tree data-
structure. The results we report here are of our current implemen-
tation on a 2GHz P4 machine with nVIDIA GeForce4 Ti graphics
card. We used a randomly generated urban model controlled by a
large set of parameters which define model size, density, distribu-
tion of heights, regularity, etc. Some of the buildings consist of
parts of the shape of the letters H and T, and some buildings have a
number of parking decks in their first floors as a means of increas-
ing the vertical complexity of the urban model. Unlike common
reconstructed urban models, here the buildings consist of several
floors, each being a 3D box. The buildings are between 9–12 units
in width and length and are rotated by at most 30◦, thus they are
not axis-aligned. See Figure 11 where only the visible buildings
are colored, while the occluded ones are in gray.

We also generated a non-realistic model, which we call the “box-
field”, that consists of randomly generated boxes. The boxes have
arbitrary size up to 10×10×10 units and arbitrary orientation (see
Figure 12) that form a highly complex 3D model. With this model
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Figure 11: The city model consisting of 26.8M triangles. (a) The view from above. The viewcell is located in a junction (in green) where
distant geometry is visible. (b) A typical view from inside the viewcell during a walkthrough. The viewcell size is 25×25×2.5 units.

(a) (b)

Figure 12: The box field model, 20.7M polygons. In (a), the entire model is displayed. Gray polygons are those detected as hidden, colored
ones are visible and the red polygons belong to the PVS although they are occluded. The area around the viewcell was cleared to increase the
portion of the visible geometry. (b) A view from inside the viewcell shows the complexity of the scene. The viewcell size is 20×20×10.

Cell Off-junction viewcells In-junction viewcells
size Time PVS / VS Time PVS / VS
3 0.31 2412 / 1760 0.40 8832 / 6824
9 0.41 2840 / 2632 0.51 12184 / 9072
14 0.58 3592 / 2894 0.96 13576 / 9184
20 0.71 4568 / 2928 1.56 18304 / 9888
25 0.78 5224 / 2960 2.01 21608 / 10072

Table 1: Results for the urban scene consisting of 26.8M triangles.
Cell size denotes the length and width of the viewcell; the height
of all viewcells is 2.5 units. PVS and VS size is given in triangles,
Time refers to culling-time in seconds. The results are taken from
two types of viewcells: Off-junction viewcells are within some city
block, whereas in-junction viewcells are positioned on the junction
of two long avenues. The buildings are between 9–12 units in width
and length and are rotated by at most 30◦ about the axes.

we tested and analyzed the behavior of our technique in the verti-
cal direction. The complexity of the box-field model is apparent
in Figure 12(b). The model is not too dense, so that some geome-
try deep inside the box-field is visible. Since a single visible node
necessarily causes an entire branch of the kd-tree to be visible, it
avoids the early culling of a large portion of the tree, reducing the
effectiveness of the use of a hierarchy.

We approximated the exact visibility set (VS) by sampling many
random viewpoints and view-directions with a from-point algo-
rithm. By running enough samples (around 1000), at some point

Cell Near viewcell Far viewcell
size Time PVS / VS Time PVS / VS
5 0.93 4864 / 1312 3.22 35456 / 14224
10 1.10 6032 / 1424 3.45 37072 / 14256
15 1.27 7184 / 1552 3.59 38912 / 14304
20 1.39 8176 / 1632 3.71 40080 / 14416
30 1.87 13136 / 2400 4.04 43248 / 14672

Table 2: Results for the box-field scene consisting of 20.7M trian-
gles with respect to different viewcell sizes. Near viewcell is a type
of a viewcell located from within the field (as seen in Figure 12(a))
whereas Far viewcell is a type located outside and far from the field.
The height of all viewcells is 10 units.

the sampled VS converges and gets very close to the exact VS. Ta-
bles 1 and 2 summarize the results for the urban model and the
box-field model. The tables compare the performance of the tech-
nique in terms of speed and culling conservativeness (the size of
the PVS vs. the VS). When the viewcell is placed in the junction
of two long avenues the VS and consequently the PVS are much
larger than the VS of a viewcell placed elsewhere. Similarly, as
shown in Table 2, by moving the viewcell away from the box-field
we increased the size of the PVS. When the viewcell is closer to the
scene, the objects are larger and occlude much more.

The degree of conservativeness of the vertical umbrae merging
technique depends on the number of umbrae maintained in the oc-
clusion map. Table 3 reports the results of computing the PVS us-



Viewcell VS Half-umbra Full umbra
size size PVS size Time PVS size Time
3 7536 28296 0.966 18968 1.354
9 7720 31936 1.149 22368 1.704
14 7808 33504 1.184 22576 1.745
25 8304 36480 1.253 24520 1.845

Table 3: Comparison between culling effectiveness using only 2.5D
occluders and by using 3D occluders on a urban city model consist-
ing of 20M triangles. Non-2.5D occluders compose 30% of the
scene occluders. VS and PVS sizes are in triangles.

ing a half umbra and a full umbra for the urban scene. Half an
umbra captures only the occlusion of 2.5D occluders. Maintaining
a single full umbra reduces the size of the PVS, at the expense of
longer computation time. On current cards it would be too expen-
sive to implement an occlusion map with multiple umbrae, since
it would require a stack of textures and a multi-pass which signifi-
cantly slows down per-pixel operations (see also Section 5).

All our tests show that the culling time is directly dependent on
two interdependent factors: (i) the number of visibility queries, and
(ii) the number of visible triangles (occluders). Due to the hierar-
chy, the technique can deal with a huge model, but this is only as
long as the size of the VS is small. A small VS means that only a
small number of triangles is visible, which implies that only a small
number of kd-cells in the hierarchy is tested.

Regarding the conservativeness of the technique, as shown in the
tables, our current implementation yields a PVS which is quite con-
servative. However, the absolute size of the PVS is relatively small
(in our tests it is less than 0.1% of the full model) and bounded for
dense scenes, so common graphics hardware can render it in real-
time. Moreover, the effectiveness of the technique is not measured
for a single view, but over time, for a large number of frames. As-
suming the scene is rendered at 30 frames per second, at least hun-
dreds of frames are generated within one viewcell, and the actual
cost of generating the PVS can be amortized over time.

Another important factor is the resolution of the ray space.
Clearly it takes more time to render in high resolution than in lower
resolution. Moreover, the cost of a hardware-based visibility test is
also proportional to the resolution. Our tests show that the cost is
a linear function of the resolution. In general, a high resolution ray
space yields a less conservative PVS. Table 4 reports these num-
bers. We found that 512×512 is an effective resolution, and all the
results reported here are with this ray space resolution.

Our results analyze the method as function of the viewcell size.
We can see a clear dependency between the viewcell size and the
size of the PVS, and consequently the culling time. The challenge
is to treat viewcells that are large relative to the average occluder.
Our results show that the culling time grows more slowly than the
viewcell size, suggesting that for these scenes our technique is not
too sensitive to the viewcell size, but rather to the size of the VS.
This implies that at the negligible cost of testing the visibility of
another large kd-cell, we could cull a scene which is twice as large.

Finally, we tested the algorithm on the Vienna2000 model which
represents about 3×3km of the city [Vienna]. We checked two
types of viewcells: small and large, and generated two different
kd-trees, respectively. Polygons crossing the kd-cell boundaries are
split. Figure 13 is a view of a culling result from a large view-
cell. The results are reported in Table 5. It can be seen that for
the smaller viewcells, the PVS is reasonably tight, ranging at about
2–2.6 times of the VS size, while for large viewcells the PVS/VS
ratio grows to about 6–7. This is because the conservative approx-
imations (see appendix) are sensitive to the viewcell size and thus
play a significant role for larger viewcells.

Resolution PVS size Percentage Time (sec.)
128×128 36936 0.14% 0.626
256×256 27920 0.10% 1.217
512×512 21608 0.08% 2.011

1024×1024 14168 0.05% 5.335

Table 4: The effect of the frame-buffer resolution on the PVS size
and the computation time. PVS size is given in triangles and per-
centage is the size of the PVS relative to the full model consisting
of 26.8M triangles. The PVS was computed from a viewcell of size
25×25×2.5 units. For comparison, the VS size is 10072 triangles.

7 Discussion

Our factorization method decomposes the 3D from-region visibil-
ity problem into many simpler from-region problems in 2D vertical
slices. The solution is asymmetric as it treats the vertical dimension
differently than the horizontal one. While the latter is almost exact
(it is conservative only due to discretization), the former assumes
vertical coherence in the scene that guarantees that a significant por-
tion of individual umbrae intersect and merge. Due to gravity, real-
istic models tend to have a general vertical orientation and typically
their vertical complexity is low. One can argue that if the simplest
vertical complexity is 2.5D, then more vertically complex models
are somewhere between 2.5D and 3D. In that sense we claim that
conceptually, our technique can treat “3D-ε” scenes, while in prac-
tice due to current hardware limitations we treat “2.5D+ε” scenes.

The methods presented by Durand et al. [2000] and Schaufler
et al. [2000] handle 3D from-region visibility by fusing occluders
based on 3D umbra intersection. As we mentioned above, um-
bra intersection is a conservative approach, which we employ only
within the vertical slices, where the visibility coherence is typi-
cally large. In contrast, in the horizontal direction we use a ray-
parameterization which is exact up to discretization of the polygo-
nal footprint. This allows to increase the horizontal dimensions of
the viewcell with respect to the average occluder size.

The from-region techniques [Koltun et al. 2000; Koltun et al.
2001; Bittner et al. 2001] are limited to 2.5D occlusion. Bittner et
al. [2001] also use a 2D ray space parameterization. In contrast to
us, their 2D visibility is used to detect the set of potential occlud-
ers for a given 2.5D object, while we use the parameterization for
the decomposition of the from-region problem. A key point in the
design of our algorithm is that it uses an occludee-independent ray
space. This is in contrast to the occludee-dependent ray parame-
terization used in [Koltun et al. 2001], where the parameterization
is valid only for objects in the shaft defined by the viewcell and
the given kd-cell. The view-dependent parameterization necessar-
ily requires a repeated clipping of the entire scene with each of the
view-dependent shafts. The view-independent ray space allows the
scene to be traversed in front-to-back order, where each visible ob-
ject is accessed only once to update the occlusion map.

Nirenstein et al. [2002] also solve the 3D from-region problem
in ray space. However, they provide an exact solution using high-
dimensional spaces, which cannot compete in speed with conserva-
tive solutions.

8 Conclusions

We have presented a from-region visibility technique that takes ad-
vantage of the capabilities of the advanced graphics hardware to
compute from-region visibility. The technique is based on the fac-
torization of the 4D problem into horizontal and vertical compo-
nents. A notable property of our solution is that it is asymmetric,
since it favors the horizontal component over the vertical one. The
footprints drawn on the horizontal plane are exact, up to discretiza-



Figure 13: A view of the culling result for the Vienna 2000 model.
The viewcell is colored in blue. Viewcell size is 150×150×2m.

Small viewcells Large viewcells
Size Time PVS / VS Size Time PVS / VS
3 0.18 964 / 424 50 0.36 3396 / 502
14 0.19 1216 / 514 100 0.45 4424 / 744
25 0.22 1546 / 592 150 0.58 5720 / 930

Table 5: Results for the Vienna2000 model. The height of the build-
ings is 2.2–50.8m (18.6m on average). Size denotes the length and
width of the viewcell in meters; the height of all viewcells is 2m.
The total number of triangles is 87k (for small viewcells) and 72k
(for larger cells). The reason for the difference is that the 67k tri-
angles of the original model are split across kd-cells boundaries.

tion, while in the vertical direction we employ a conservative oc-
cluder fusion technique. This is based on the observation that in
common scenes there is a preferable orientation since the vertical
direction is less complex.

As discussed above, the current implementation of the occluder
fusion in the vertical direction is conservative. One can con-
sider other hardware-assisted implementations and adapt them to
the available hardware capabilities. We believe that in the future,
graphics cards will include new features that will facilitate the im-
plementation of from-region visibility techniques. This is espe-
cially vital for remote walkthrough applications where from-point
calculations on the server are not applicable due to network latency.
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is shot from point v0 on the viewcell boundary to the point v1 on the outer square boundary. (b) Measuring angles by their tangents. Here,
tanα = H/L, where α is the bottom supporting angle of the segment Q, H is the height of the lower endpoint of Q, and L is its the horizontal
distance from the viewcell front. (c) Representing H as an interpolation of the heights of the endpoints, h0 and h1.
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Appendix

Here we describe the calculation of the supporting and separating
angles and their conservative rasterization over the footprint. We
choose to consider the tangents of the angles because they can be
easily computed and maintain the order relation between angles.

Given a 3D triangle R and a directional slice P(s, t), denote the
intersection of R with P(s, t) by Q. The bottom supporting an-
gle α is given by v = tanα = H/L (see Figure 14(b)). We will
only discuss the bottom supporting angles; the other supporting
and separating angles can be handled in a similar fashion. H
and L are functions of (s, t), and we would like to interpolate
v(s, t) = H(s, t)/L(s, t) across the horizontal (s, t) footprint of R to
obtain the 3D footprint in the (s, t,v) parameter space.

L is the horizontal distance between the considered endpoint of
Q and the front of the viewcell (i.e. the part of the viewcell closest
to Q). In Figure 14(a), L = λ1‖v1− v0‖. Define n1 =⊥ u0u1. It
can be easily verified that:

λ1 =
< u0−v0, n1 >

< v1−v0, n1 >
.

Since v0 = M0 + s(M1−M0) and v1 = N0 + t(N1−N0), we obtain
by substitution that

λ1 =
a1s+a3

b1s+b2t +b3
,

where

a1 =−< M1−M0, n1 >, a3 =< u0−M0, n1 >,

b1 = a1, b2 =< N1−N0, n1 >, b3 =< N0−M0, n1 > .

Now, let us compute the function H, which is the height of the
considered endpoint of Q (note that when we compute the top sup-
porting and separating angle of Q, height is measured from the

top of the viewcell). Let h0 and h1 be the heights of the end-
points of the considered edge of R (see Figures 14(a),(c)). Then
H = h0 + λ2(h1 − h0). It is thus sufficient to calculate λ2 as a
function of s and t. Denote n2 =⊥ v0v1. Then similarly to λ1, λ2
can be written as

λ2 =
< v0−u0, n2 >

< u1−u0, n2 >
.

Assume Mi = (Mix,Miy), Ni = (Nix,Niy), i=0,1. We can write
n2 explicitly as

n2 = (∆Ny t−∆My s+N0y−M0y, ∆Mx s−∆Nx t +M0x−N0x).

After substituting this explicit form in the equation of λ2, we get

λ2 =
a1s+a2t +a3

b1s+b2t +b3
,

where the numbers a j and b j, j=1,2,3, are constants (they depend
on Mi, Ni and the segment endpoints only). Thus, H is a first-order
rational function of s and t.

Linear approximation. The value of ‖v1− v0‖ is between some
dmin and dmax over the entire (s, t) footprint. Thus, L can be conser-
vatively approximated by a first order rational function of s, t:

dminλ1(s, t)≤ L(s, t)≤ dmaxλ1(s, t).

How to linearly approximate H/L? First, either H or L are con-
servatively approximated by a constant. It is preferable to take the
“less changing” function for that purpose. If the height does not
change much (h0 ≈ h1), then H should be set to a constant. Other-
wise, L is set to a constant which is the minimal/maximal distance
of a point in the viewcell from the segment, for occluder/occludee
accordingly. The function that is not set to a constant can be further
approximated by a plane. Suppose we have

F(s, t) =
a1s+a2t +a3

b1s+b2t +b3
=

F1(s, t)
F2(s, t)

,

where F = H or F = L. The point (s, t) is in a compact polygonal
domain P. F1(s, t) has the same sign as F2(s, t), because F(s, t)
is positive. Thus, we only need to compute m1 = maxF2(s, t) and
m2 = minF2(s, t) over the domain P, by testing its vertices. Then,
supposing w.l.o.g. that F2 is positive:

a1s+a2t +a3

m1
≤ F(s, t)≤ a1s+a2t +a3

m2
.

For even tighter approximation, we triangulate P using “cutting
ears” algorithm [Meisters 1975] and compute linear approximations
of F over each triangle.


