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Abstract

The launch of Xbox Kinect has built a very successful
computer vision product and made a big impact to the gam-
ing industry; this sheds lights onto a wide variety of poten-
tial applications related to action recognition. The accurate
estimation of human poses from the depth image is univer-
sally a critical step. However, existing pose estimation sys-
tems exhibit failures when faced severe occlusion. In this
paper, we propose an exemplar-based method to learn to
correct the initially estimated poses. We learn an inhomo-
geneous systematic bias by leveraging the exemplar infor-
mation within specific human action domain. Our algorith-
m is illustrated on both joint-based skeleton correction and
tag prediction. In the experiments, significant improvemen-
t is observed over the contemporary approaches, including
what is delivered by the current Kinect system.

1. Introduction
With the development of high-speed depth cameras [1],

the computer vision field has experienced a new opportuni-
ty of applying a practical imaging modality for building a
variety of systems in gaming, human computer interaction,
surveillance, and visualization. A depth camera provides
depth information as different means to color images cap-
tured by the traditional optical cameras. Depth information
gives extra robustness to color as it is invariant to lighting
and texture changes, although it might not carry very de-
tailed information of the scene.

The human pose estimation/recognition component is a
key step in an overall human action understanding system.
High speed depth camera with the reliable estimation of the
human skeleton joints [22] has recently led to a new con-
sumer electronic product, the Microsoft Xbox Kinect [1].

Even though the depth data provides invariant and infor-
mative cues, existing systems (e.g. classification-based ap-
proaches for skeleton joint detection [22]) are not all satis-
factory due to severe occlusions. Fig. 1 illustrates a pipeline
of pose recognition, which includes three important steps:
(1) background removal, (2) initial pose estimation, and (3)

Figure 1. Pose recognition pipeline. From a depth image of single frame,
the pipeline includes background removal, initial pose estimation, and pose
correction. The skeleton joints marked by color dots in (c) are the ones with
high confidence in estimation whereas the ones without color dots are with
the low confidence.

pose correction. After the background is removed from the
depth image, skeleton joints are estimated from the fore-
ground depth information using e.g. [22, 10]. Note that,
serious errors exist in the estimated skeleton in Fig. 1(c).
The pose correction stage further takes in these initial per-
frame estimations (as “noisy” input) and tries to correct the
errors and deliver more robust results. In this paper, we
focus on the third step, pose correction, which also plays a
very important role in the overall pose detection/recognition
pipeline. To show to what extent the third stage can help, the
pose correction stage performs “de-noising” by working on
extracted “noisy” skeleton joints only, without looking back
at the original depth data.

To perform pose correction, e.g. obtaining the result
shown in Fig. 1(d) from a noisy estimation in Fig. 1(c), two
types of information can be leveraged: (1) temporal motion
consistency and (2) the systematic bias. Using the tempo-
ral information to enforce the motion consistency has been
extensively studied in the literature [11, 6] but studying the
systematic bias has received relatively less attention. Gen-
erally, the biases are no-linear and are associated with com-
plex data manifolds. As illustrated in Fig. 2, the systematic
biases do exist, especially in domain specific actions.

For a general estimation problem, its systematic bias
might be significant and has an explicit analytic function
[2]. In our task of human action pose recognition, each pose



is represented by a number of skeleton joints; each joint
is estimated/extracted using local and contextual depth fea-
tures [22]. The bias estimation problem in our task observes
two properties: (1) human action has certain (sometimes
strict) regularity especially when some actions, e.g. golf or
tennis, are performed, and (2) the bias is not homogeneous
in the data manifold. For example, when a person is facing
the camera with no occlusion, the initial estimations are ac-
curate; when a person is standing in a side-view with certain
hand motion, there is severe occlusion and the initial esti-
mation may not be all correct, as illustrated in Fig. 1. In this
paper, the main contribution is learning the inhomogeneous
bias function to perform pose correction and we empha-
size the following two points: (1) exemplar-based approach
serves a promising direction for pose correction in depth
images, (2) learning an inhomogeneous regression function
should naturally perform data-partition, abstraction, and ro-
bust estimation. With a thorough experimental study, our
approach shows encouraging results.

Motion and action recognition from optical cameras has
been an active research area in computer vision; typical ap-
proaches include 3D feature-based [7], part-based (poselet-
s) [3], and segment-based [16] approaches. Although in-
sights can be gained, these methods are not directly appli-
cable to our problem.

From a different view, bias estimation has been a long
standing problem in statistics [2]. Related work in the pose
correction task uses physical-model-based approaches [23],
Kalman-like filters [12], or exemplar-based approaches but
with very specific design, which is hard to adapt to the gen-
eral task [15]. Here we adopt the random forest regressor,
which takes in both the estimated solutions and their estima-
tion uncertainties. We show significant improvement over
other regressors such as nearest neighborhood [9], Gaus-
sian process regression [20], support vector regression [21],
and logistic regression [17]. Our approach is real-time and
can be directly applied to the Kinect system.

2. Data

In this section, we introduce the data used for our pose
correction problem. The recently launched Kinect camer-
a [1] is able to give 640×480 image at 30 frames per second
with depth resolution of a few centimeters. Employing the
Kinect camera, we are able to generate a large number of
realistic depth images of human poses. The human skeleton
estimated from the depth image by the current Kinect sys-
tem [22] is the direct input for our approach, which is called
ST (Skeleton esTimation) in the rest of this paper. As shown
in Fig. 3(a), there are 20 body joints in a skeleton, including
hips, spine, shoulders, head, elbows, wrists, hands, knees,
ankles, and feet.

As suggested by the recent work [22, 10], the ground
truth positions of the body joints can be captured by mo-

Figure 2. Three groups of poses. In each group, the poses are similar,
and the errors of the estimated skeletons are somewhat systematic, e.g. the
right forearms of the skeletons in the second group and those in the third
group.

tion capture (mocap) system. We obtain a set of mocap of
human actions as the ground truth of the estimated skeletal
joints. The mocap data is also called GT (Ground Truth) in
the rest of this paper. In our experiments, we limit the rota-
tion of the user to ±120◦ in both training and testing data.
Fig. 3(b) shows several pairs of ST and GT.

3. Pose Correction
3.1. Objectives

We focus on two tasks: joint-based skeleton correction
and pose tag prediction. Our inputs are m estimated skele-
tons st = (ST1, . . . , STm) from a video sequence of m
depth image frames. Each skeleton estimation ST includes
n (n = 20 here) joints: ST = (x̂j , cj ; j = 1, . . . , n), where
x̂j ∈ R3 denotes the world coordinates of the jth body join-
t, as shown in Fig. 3. cj indicates the confidence for the
estimation x̂j by the skeleton joint detector, i.e. if joint j
has high confidence, cj = 1; Otherwise, cj = 0. As shown
in Fig. 1 and Fig. 2, color dots correspond joints of high
confidence whereas joints without color dots are with low
confidence.

The first task (joint-based skeleton correction) is to pre-
dict the “true” position of each joint: x̂j → xj and the
“true” skeletons gt = (GT1, . . . , GTm) where each GT =
(xj ; j = 1, . . . , n) and xj ∈ R3. In training, we are given
a training set of {(st,gt)k}Kk=1 of K pairs of st and gt; in
testing, we want to predict the “true” gt from a given input
st.

The second task (pose tagging) is to predict the pose tag
Υ = (Υ1, . . . ,Υm) from a given st = (ST1, . . . , STm).
The tag is a real value ranging from 0.0 to 1.0, indicating a
specific stage in a particular action, e.g. golf swing. Each
type of poses is assigned a tag, as illustrated in Fig. 4. In
the somatosensory game, the tag is used to drive the avatar
to put on the same pose as the player performs. In training,



Figure 3. Skeleton data. (a) A template skeleton and its joints. The skeleton is a simple directed graph, in which the directions are denoted by the arrows
beside the skeleton edges. For denotational simplicity, we do not show the arrows in other figures. (b) Several pairs of input noisy skeletons (upper) and
ground truth skeletons (lower).

Figure 4. Pose tag. Each type of poses are assigned to a tag, e.g. the tag
of “front swing” (the last pose) is about 0.95.

we are given a training set of {(st,Υ)k}Kk=1 of K pairs of
st and Υ; in testing, we want to predict the tag values Υ
from a given input st.

The tag is actually a low dimensional manifold coordi-
nate of the pose. Both of the two tasks are performed to
recover the pose from a noisy initial estimation, so we cate-
gorize them into the tasks of pose correction.

3.2. Normalized Skeleton Joints Coordinates

From the world coordinates, we want to have an intrin-
sic and robust representation. Based on the n = 20 joints,
we show the kinematic skeleton template as displayed in
Fig. 3(a), which is a directed graph. Each joint is a node
of the graph. Given an ST = (x̂j , cj ; j = 1, . . . , n), we
compute its normalized coordinates for our problem, denot-
ed as H(ST ) = (rj , cj ; j = 1, . . . , n). Since x̂j denotes
the world coordinate, we normalize them to the template to
remove not only the global translation but also the variation
in individual body differences. We use the skeleton joint
C. Hip as the reference point, the origin, r1 = (0, 0, 0), and
map the other joints to the sphere as rj =

x̂j−x̂jo

∥x̂j−x̂jo∥2
where

joint jo is the direct predecessor of joint j on the skeleton
(directed graph).

The design of the transformed coordinates H(ST ) is
motivated by the kinematic body joint motion. H(ST ) ob-

serves a certain level of invariance to translation, scaling,
and individual body changes. We can actually drop r1 s-
ince it is always on the origin. One could add other features
computed on ST to H(ST ) to make it more informative but
this could be a topic of future research.

3.3. Joint­based Skeleton Correction

3.3.1 Joint offset inference

To perform skeleton correction from a noisy input ST , in-
stead of directly predicting the “true” positions of the body
joints, we infer the offsets between the joints in the ST and
those in the GT . This has its immediate significance: when
a person is facing the camera with no occlusion, ST is ac-
tually quite accurate, and thus has nearly zero difference to
GT ; when a person is playing the game in side view with
severe occlusions, there is often a large and inhomogeneous
difference between ST and GT . This is essentially a man-
ifold learning problem. Certain clusters of ST on the man-
ifold can directly be mapped to, e.g. very low values, if we
would predict the offsets; predicting the direct coordinates
of GT however would have to explore all possible ST in
the data space.

Now we show how to compute the offsets between the
joints in ST = (x̂j , cj ; j = 1, . . . , n) and those in GT =
(xj ; j = 1, . . . , n), where x̂j ,xj ∈ R3 are the world co-
ordinates of joint j in ST and GT , respectively. To en-
sure the scale invariance of the offsets, skeletons are nor-
malized based on the default lengths of the skeleton edges
in the template shown in Fig. 3(a). First, we choose a set
of stable joints JS = {Spine, C. Shoulder, Head, L. Hip,
R. Hip, L. Knee, R. Knee, L. Ankle, R. Ankle }. We cal-
l them stable joints because other joints in the ST , such
as Hand and Wrist, are often occluded by the human body,
thus the skeleton edge lengths between them are prone to
errors. Given an ST , for each skeleton edge between the
stable joints and their direct predecessors, we compute the
proportion to the template skeleton edge length: λ(j, jo) =
∥x̂j − x̂jo∥2/∥Tj − Tjo∥2, where Tj is the jth joint for the



template T (shown in Fig. 3), which is fixed in this problem.
Then, the scale proportion of the ST is

λ(ST ) =

∑
j∈JS

λ(j, jo) · δ(∥λ(j, jo)−
∑

λ(j,jo)
|JS | ∥1 ≤ th)∑

j∈JS
δ(∥λ(j, jo)−

∑
λ(j,jo)
|JS | ∥1 ≤ th)

,

(1)
where δ(·) is an indicator function which is a robust mea-
sure to exclude the outliers and

th = 3

√√√√∑
j∈JS

(λ(j, jo)−
∑

λ(j,jo)
|JS | )2

|JS |
. (2)

Finally, the offset of a joint j between the pair of x̂j and
xj is computed as

∆j = (xj − x̂j)/λ(ST ), (3)

and D = (∆1, . . . ,∆n) for each skeleton of n joints.
For the entire sequence of m images, we have d =
(D1, . . . ,Dm). Note that we do not need to explicitly align
the pair of ST and GT , since they are obtained from the
same depth image.

3.3.2 Learning the regression for joint offsets

In this section, we discuss how to learn a regression func-
tion to predict the offset to perform pose correction. We are
given a training set of S = {(st,gt)k}Kk=1 of K pairs of
st and gt (for denotational simplicity, we let K = 1 and
thus k can be dropped for an easier problem understand-
ing). Using the normalization step in Sec. 3.2, we obtain
h(st) = (H(ST1), . . . , H(STm)) where each H(ST ) =
(rj , cj ; j = 1, . . . , n); using the offset computing stage in
Eq. 3, we compute the offset, d = (D1, . . . ,Dm). Thus,
our goal is to predict the mapping h(st) → d.

We first learn a function to directly predict the mapping
f : H(ST ) → D by making the independent assumption
of each pose. From this view, we rewrite the training set as
S = {(H(STi),Di)}mi=1.

Random forest [4, 18, 14] includes an ensemble of tree
predictors that naturally perform data-partition, abstraction,
and robust estimation. For the task of regression, tree pre-
dictors take on vector values and the forest votes for the
most possible value. Each tree in the forest consists of split
nodes and leaf nodes. Each split node stores a feature in-
dex with a corresponding threshold τ to decide whether to
branch to the left or right sub-tree and each leaf node stores
some predictions.

Our objective is to learn a random forest regression func-
tion f : H(ST ) → D. Following the standard greedy
decision tree training algorithm [13, 22, 10], each tree in
the forest is learned by recursively partitioning the train-
ing set S = {(H(STi),Di)}mi=1 into left Sl and right
Sr subsets according to the best splitting strategy θ∗ =

argminθ
∑

p∈{l,r}
|Sp(θ)|
|S| e(Sp(θ)), where e(·) is an error

function standing for the uncertainty of the set and θ is a set
of splitting candidates. If the number of training samples
corresponding to the node (node size) is larger than a maxi-
mal κ, and

∑
p∈{l,r}

|Sp(θ
∗)|

|S| e(Sp(θ
∗)) < e(S) is satisfied,

then recurse for the left and right subsets Sl(θ
∗) and Sr(θ

∗),
respectively.

The selection of the error function e(·) is important for
learning an effective regressor. Here, we employ the rooted
mean squared differences:

e(S) =

√∑m
i=1 ∥Di −

∑m
i=1 Di

|S| ∥22
m

. (4)

In the training stage, once a tree t is learned, a set of

training samples Slf
t = {Dlf

i }|S
lf
t |

i=1 would fall into a partic-
ular leaf node lf . Obviously, it is not effective to store all
the samples in Slf

t for each leaf node lf . Instead, we would
do an abstraction for the learning purpose. One choice is to
store the mean D̄(lf) =

∑
i D

lf
i /|Slf

t | of the set Slf
t . One

could store other abstractions such as the histogram of Slf
t

as well. In addition, each tree t would assign a leaf node
label Lt(H(STi)) for a given H(STi).

In the testing stage, given a test example ST =
(x̂j , cj ; j = 1, . . . , n), for each tree t, it starts at the root,
then recursively branches left or right. Finally, it reaches the
leaf node Lt(H(ST )) in tree t, then the prediction given by
tree t is Ft(H(ST )) = δ(lf = Lt(H(ST ))) · D̄(lf), where
δ(·) is an indicator function. The final output of the forest
(T trees) is a probability function:

PH(ST )(D) =
1

T

T∑
t=1

exp(−∥D− Ft(H(ST ))

hD
∥22), (5)

where hD is a learned bandwidth. The mean can be con-
sidered as another output of the learned regression function
f(H(ST )) = EPH(ST )

[D] where EPH(ST )
[·] indicates the

expectation. The corrected skeleton is obtained by (if we
would use the f(H(ST )) as the output)

CT = ST− + λ(ST ) · f(H(ST )), (6)

where ST− = (x̂j ; j = 1, . . . , n) and the components in
CT are CT = (zj ; j = 1, . . . , n). In the experiments, we
refer to this method (using the f(H(ST )) as the output) as
RFR.

3.3.3 Regression cascade

In the recent work [8], an algorithm named cascaded pose
regression (CPR) is proposed, which iteratively trains a se-
ries of regressors to approach the ground truth. Inspired by
CPR, we propose a regression cascade (RFRC) here.



Figure 5. Illustration of the corrected human skeleton updated at each
iteration.

As described in Sec. 3.3.2, we learn a regression function
f : H(ST ) → D. Here, we rewrite it as

f (0) : H(ST ) → D(0). (7)

Then we obtain the corrected skeleton CT (1) by

CT (1) = ST− + λ(ST ) · f (0)(H(ST )). (8)

Then we compute the normalized skeleton joint coordinates
H(CT (1)) and learn the second layer of regression func-
tion:

f (1) : (H(ST ),H(CT (1))) → D(1), (9)

where D(1) is the offsets between CT (1) and GT computed
by the stage in Eq. 3. Then repeat the process mentioned
above. The (i+ 1)th layer of regression function is

f (i) : (H(ST ),H(CT (i))) → D(i). (10)

The output skeleton is

CT (i+1) = CT (i) + λ(ST ) · f (i)(H(ST ),H(CT (i))).
(11)

For consistency, we define CT (0) = ∅ and obtain

CT (i+1) = ST− + λ(ST ) ·
∑
i

f (i)(H(ST ),H(CT (i))).

(12)
Fig. 5 shows an illustration for the process of the regres-

sion cascade.

3.3.4 Temporal constraint

Taking the motion consistency into account, we could use
the temporal constraint to improve our correction result-
s. Our learned regression function outputs a probabili-
ty distribution as shown in Eq. (5), which can be used
to employ the temporal information. Given the estimat-
ed skeleton sequence st = (ST1, . . . , STm), our goal
is to obtain h(st) → d, where d = (D1, . . . ,Dm),
with the corresponding corrected skeleton sequence ct =
(CT1, . . . , CTm). To meet the real time requirement, our
approach follows a causal model, i.e. the current prediction
only depends on past/current inputs/outputs. For the ith in-
put estimated skeleton STi, its offset is computed as

Di =

{
f(H(STi)) if i = 1

arg min
D∈Rn×3

E(D|STi, STi−1,Di−1) otherwise ,

(13)
where E(·) is an energy function defined as

E(D|STi, STi−1,Di−1) = α · (− log(PH(STi)(D))) +

(1− α)∥ST−
i + λ(STi)D− (ST−

i−1 + λ(STi−1)Di−1)∥22, (14)

where α is a weight factor. We use coordinate descent to
solve Eq. 14. Finally, the corrected skeleton CTi is

CTi = ST−
i + λ(STi)Di. (15)

In the experiments, we refer to the random forest regression
and cascade methods under temporal constraint as RFRT
and RFRCT respectively.

3.4. Pose tag prediction

In this section we discuss how to learn a regression func-
tion to predict the tag of a pose. The learning process is
the same as what we did for the skeleton correction; so we
follow the notions in Sec. 3.3.2 and 3.3.4 except for replac-
ing the offset D by the tag value Υ. As stated in the pre-
vious section: we are given a training set {(st,Υ)k}Kk=1

of K pairs of st and Υ (for denotational simplicity, we
let K = 1 and thus k can be dropped for easier problem
understanding). Using the normalization step in Sec. 3.2,
we obtain h(st) = (H(ST1), . . . , H(STm)), where each
H(ST ) = (rj , cj ; j = 1, . . . , n). Thus our objective is to
obtain h(st) → Υ, where st = (STi; i = 1, . . . ,m) and
(Υ = Υi; i = 1, . . . ,m). Similarly, a random forest regres-
sion function to directly predict the tag only based on the
individual skeleton f : H(ST ) → Υ is also learned first.
Here, each leaf node in tree t also stores the mean tag val-
ues of the samples falling into the leaf node. In the testing
stage, given a test example ST , the prediction Ft(H(ST ))
given by tree t is also computed similarly as in Sec. 3.3.2.
The final output of the forest (T trees) is a regression in
probability function:

PH(ST )(Υ) =
1

T

T∑
t=1

exp(−∥Υ− Ft(H(ST ))

hΥ
∥2), (16)

where hΥ is a learned bandwidth. The mean is also con-
sidered as another output of the learned regression function
f(H(ST )) = EPH(ST )

[Υ].
A tag is a point on the manifold of the coherent motion,

therefore the temporal constraint would be much more use-
ful and effective in predicting the tag value. Our approach
for tag prediction is also a cause model. Given the estimat-
ed skeleton sequence st = (ST1, . . . , STm), the goal is to



obtain the tag sequence (Υ1, . . . ,Υm). For the ith input
estimated skeleton STi, similarly Υi is predicted as:

Υi =

{
f(H(STi)) if i = 1

arg min
Υ∈[0,1]

E(Υ|STi,Υi−1) otherwise , (17)

where

E(Υ|STi,Υi−1) = α · (− log(PH(STi)(Υ))) +

(1− α)(Υ−Υi−1)
2, (18)

where α is the weight factor. The minimization of the above
energy can be done similarly as before.

4. Experimental Results
In this section, we show the experimental results and give

the comparisons between alternative approaches, including
what is delivered in the current Kinect system. In the re-
mainder of this section, unless otherwise specified, we set
the parameters for learning random forest as: the number of
trees T = 50 and leaf node size κ = 5. The bandwidths hD

and hΥ and the weight factor α are optimized on a hold-out
validation set by grid search (As an indication, this result-
ed in hD = 0.01m, hΥ = 0.03 and α = 0.5). We set the
number of the layers of regression cascade as L = 2.

4.1. Joint­based skeleton correction

To evaluate our algorithm, we show the performance
on a challenging data set. This data set contains a large
number of poses, 15, 815 frames in total, coming from 81
swing motion sequences. Some pose examples are shown
in Fig. 3. We select 19 sequences containing 3, 720 frames
as the training data set. The rest 12, 095 frames are used for
testing.

4.1.1 Error Metrics

Given a testing data set {(STi, GTi)}mi=1, we obtain the cor-
rected skeletons {CTi; i = 1, . . . ,m}. We measure the ac-
curacy of each corrected skeleton CT = (zj ; j = 1, . . . , n)
by the sum of joint errors (sJE) GT = (xj ; j = 1, . . . , n):
ε =

∑
j ∥zj − xj∥2. To quantify the average accuracy

on the whole testing data, we report the mean sJE (msJE)
across all testing skeletons:

∑
i εi/m (unit: meter).

4.1.2 Comparisons

In this section, we give the comparison between the meth-
ods for joint-based skeleton correction.
Current Kinect approach. To illustrate the difficulty of
the problem, we compare with the approach in the current
Kinect system. The current Kinect system for skeleton cor-
rection is complex, which employs several strategies such as

temporal constraint and filtration. The main idea of the ap-
proach is nearest neighbor search. For a testing ST , The ap-
proach searches its nearest neighbor in the estimated skele-
tons in the training set. Then the ground truth of the nearest
neighbor is scaled with respect to ST to be the corrected
skeleton of ST . The details of this system is unpublished.
We refer to the current approach in Kinect system as K-
SYS in the rest of paper. On the whole testing set, K-SYS
achieves 2.0716 msJE, while RFR achieves 1.5866. We il-
lustrate some examples of the corrected skeletons obtained
by K-SYS and our algorithm in Fig. 6(b).
Regress the absolute joint position. To show the signifi-
cance of learning the offsets between joints in ST and GT ,
we also give the result by directly predicting the absolute
joint position by random forest regression (RFRA). To learn
the absolute position, for each GT = (xj ; j = 1, . . . , n)
in the training set S = {(STi, GTi)}mi=1, we translate the
C. Hip x1 to (0, 0, 0) to align them. The absolute join-
t position of each GT = (xj ; j = 1, . . . , n) is obtained
by x̃j = (xj − x1)/λ(GT ). Then a regression function
f̃ : H(ST ) → (x̃1, . . . , x̃n) is learned as the process in
Sec. 3.3.2. Given a testing ST = (x̂j ; j = 1, . . . , n), the
joint positions of the corrected skeleton CT = (zj ; j =

1, . . . , n) are obtained by CT = λ(ST )f̃(H(ST )). Final-
ly, the C. Hip z1 of the obtained CT is translated to x̂1 to
align the CT with the ST . As shown in Fig. 6(a), RFRA
does not perform as well as RFR.
Other regression algorithms.We also apply other regres-
sion algorithms to joint-based skeleton correction, such as
Gaussian process regressor [20] (GPR) and support vector
regressor [21] (SVR). The implementation of GPR was tak-
en from the GPML toolbox [19], which learns the parame-
ters of the mean and covariance functions of Gaussian pro-
cesses automatically. GPR achieves 1.7498 msJE. Fig. 6(a)
shows the apparent advantage of RFR over GPR. We em-
ploy the implementation of SVR taken from the package of
LIBSVM [5]. We utilize radial basis function (RBF) kernel
for SVR. and obtain 1.6084 msJE. The result obtained by
SVR is also worse than RFR. Besides, to train the model of
SVR, quite a few parameters need to be tuned.

We illustrate the performances of all the methods men-
tioned above in Fig. 6(a). The baseline is the msJE of the
input estimated skeletons, which is 2.3039 msJE. RFRT, R-
FRC and RFRCT achieve 1.5831, 1.5766 and 1.5757, re-
spectively. The results demonstrate that both performing in
the way of cascade and adding temporal constraint can help
improve the performance. Generally, our approach decreas-
es 44% and 16% error with and without occlusion respec-
tively.

4.1.3 Parameter Discussion

We investigate the effects of several training parameters on
regression accuracy. As shown in Fig. 7(a), the mean sJE



Figure 6. Comparison with several methods on our testing data set. (a) The quantitative results obtained by several methods. The baseline is the msJE of
the input testing estimated skeletons. (b) Examples of the human skeletons. In each example we see the GT , the ST , the CT obtained by K-SYS. and the
CT obtained by RFRC. The CT s obtained by RFRC are more similar to the GT s.

Figure 7. Training parameters vs. performance on joint-based skeleton
correction. (a) Number of trees. (b) Leaf node size.

decreases as the number of trees increases. We also show
the performance by varying the leaf node size. The tree
depth is controlled by the leaf node size. The smaller is the
leaf node size, the deeper is the tree. As shown in Fig. 7(b),
the performance of RFR would decrease when setting larger
leaf node size. However, encouragingly, RFRC even obtains
better result when setting larger leaf node size.

4.2. Pose tag prediction

To evaluate our method for pose tag prediction, we col-
lect a larger data set totally containing 185 swing motion
sequences (mocap data is unnecessary here, so it’s conve-
nient to collect more data). We annotate all the sequences
and select 37 sequences containing 3, 066 frames as train-
ing data; the rest 148 sequences containing 12, 846 frames
are used for testing.

4.2.1 Error Metrics

Given the testing data set {(STi,Υi)}mi=1, where Υi is the
annotated tag of STi, we obtain the predicted tags {Υ̂i}mi=1.
The tag prediction accuracy on the whole testing data set
is quantified by the rooted mean square (RMS) distance:√
Σm

i=1(Υ̂i −Υi)2/m.

4.2.2 Comparisons

In this section, we give the comparison between the meth-
ods for tag prediction.
Current Kinect approach. The current approach in Kinect
system (K-SYS) for tag prediction also contains many de-
tails such as imposing temporal constraint and filtering. The

main idea of K-SYS is also nearest neighbor search. For a
testing ST , K-SYS searchs its nearest neighbor in training
set, then the predicted tag of its nearest neighbor is taken
as the tag of the ST . K-SYS achieves 0.1376 RMS, which
is even better than RFR (0.1406 RMS). This observation
indicates the significance of the temporal constraint in tag
prediction. Our algorithm RFRT significantly improves R-
FR, it achieves 0.1164 RMS. We also compare with K-SYS
by varying the size of training data set. We divide our data
set into 10 folds with equal sizes, then randomly select Nt

folds for training and use the rest for testing. We compute
the mean and the standard deviation of the RMS distances
obtained by repeating the random selection for 5 times. The
results for Nt = 4, 6, 8 using 10 trees are shown in Fig. 8(b).
K-nearest neighbors search. To show the advantage of
random forest in data abstraction and robust estimation, we
compare with K-nearest neighbors search (KNNS). Giv-
en a testing sequence (ST1, . . . , STm), for each STi(i ∈
(1, . . . ,m)), K nearest neighbors are searched from the
training set, and the tags of the neighbors are obtained:
ΥK = (Υk; k = 1, . . . ,K). Then we obtain the probabili-
ty distribution PH(STi)(Υ) = 1

K

∑K
k=1 exp(−∥Υ−Υk)

hΥ
∥2).

Then considering the temporal consistency, using the
method in Sec. 3.4, the optimal value is searched from the
distribution PH(STi)(Υ) as the predicted tag of STi. KNNS
only achieves 0.1451 RMS.
Other regression algorithms. We apply GPR and SVR to
tag prediction, which achieve 0.1563 RMS and 0.1426 RM-
S respectively. The tag is a real value ranging from 0.0 to
1.0, so we also apply logistic regression (LR) [17] to tag
prediction. However, it only achieves 0.1806 RMS. Unlike
RFR, which benefits from optimization under the temporal
constraint, GPR, SVR and LR have no such advantage.

We illustrate the results of tag prediction on our testing
data set in Fig. 8(a). Fig. 8(c) shows tag curves of three
example sequences. The horizontal and vertical axes of the
tag curve are the frame index of the sequence and the tag
value, respectively. The curves obtained by RFRT (black)
fit the annotated curves (green) best.

Besides the golf swing motion, we also compare RFRT



Figure 8. Comparison with several methods on the testing data set. (a) The quantitative results obtained by several methods. (b) Accuracy versus size of
training data set (c) The tag curves of three example sequences. In each example, we show the annotated curve (green) and those obtained by K-SYS (red),
RFR (blue) and RFRT (black). The yellow curves fit the green best.

Figure 9. Training parameters vs. performance on tag prediction. (a)
Number of trees. (b) Leaf node size.

Table 1. The runtime of our approach on Xbox. The runtime is mea-
sured by millisecond per frame. For the two tasks, joint-based skeleton
correction and tag prediction, we report the runtime of RFR and RFRT,
respectively.

Number of trees 10 20 30
Skeleton correction (RFR) 6.6ms 11.8ms 17.2ms

Tag prediction (RFRT) 5.9ms 8.8ms 11.8ms

with K-SYS on a football throwing motion data set. R-
FRT and K-SYS achieve 0.0791 RMS and 0.0883 RMS re-
spectively. The results for golf swing and football throwing
show our approach is applicable to any pose correction.

4.2.3 Parameter Discussion

The effects of the training parameters, including the number
of trees and leaf node size, on tag prediction accuracy is
shown in Fig. 9. Generally, using more trees and setting
smaller leaf node size help improve the performance.

Runtime Our approach is real-time and can be direct-
ly embedded into the current Kinect system. We give the
runtime of our approach on Xbox in Tab. 1.

5. Conclusion
We have presented a new algorithm for pose correc-

tion and tagging from the initially estimated skeletons from
Kinect depth images. Our exemplar-based approach serves
a promising direction and we highlighted the importance of
learning the inhomogeneous systematic bias. Performing
cascaded regression and imposing the temporal consistency
also improves pose correction. Our experimental results for
both pose joints correction and tag prediction show signifi-
cant improvement over the contemporary systems.
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